Ownership of intellectual property rights

Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Commonwealth of Australia (referred to as the Commonwealth).

Creative Commons licence

All material in this publication is licensed under a Creative Commons Attribution 4.0 International Licence, save for content supplied by third parties, logos and the Commonwealth Coat of Arms.

Creative Commons Attribution 4.0 International Licence is a standard form licence agreement that allows you to copy, distribute, transmit and adapt this publication provided you attribute the work. See the summary of the licence terms or the full licence terms.

Cataloguing data

ABARES 2017, Australian crop report, Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra, December. CC BY 4.0.

ISSN 1447–8358
ABARES project 43506

Internet

This publication is available at agriculture.gov.au/abares/research-topics/agricultural-commodities/australian-crop-report

Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES)
Postal address GPO Box 858 Canberra ACT 2601
Switchboard +61,2,6272,2010
Email info.abares@agriculture.gov.au
Web agriculture.gov.au/abares

Inquiries about the licence and any use of this document should be emailed to copyright@agriculture.gov.au.

The Australian Government acting through the Department of Agriculture and Water Resources, represented by the Australian Bureau of Agricultural and Resource Economics and Sciences, has exercised due care and skill in preparing and compiling the information and data in this publication. Notwithstanding, the Department of Agriculture and Water Resources, ABARES, its employees and advisers disclaim all liability, including for negligence and for any loss, damage, injury, expense or cost incurred by any person as a result of accessing, using or relying on information or data in this publication to the maximum extent permitted by law.

The next issue of Australian crop report is scheduled to be released on 13 February 2018.

In the next issue:

2017–18 winter crop area and production estimates updated
2017–18 summer crop area and production forecasts updated

Acknowledgements

This report was prepared by Andrew Cameron, Charley Xia, Christopher Price, Dean Mansfield, Matthew Miller, Nicolas Perndt, Amelia Brown, Benjamin K Agbenyegah and Nathan Pitts.
Contents

National overview 1
Climatic and agronomic conditions 5
Crop conditions and production forecasts, by state 12
 New South Wales 12
 Queensland 14
 Victoria 15
 South Australia 16
 Western Australia 17
Statistical tables 18

Tables

Table 1 Winter crop production, Australia, 2007–08 to 2017–18 2
Table 2 Winter crop area, Australia, 2007–08 to 2017–18 2
Table 3 Summer crop area and production, Australia, 2007–08 to 2017–18 4
Table 4 Rainfall in major cropping districts, median and actual, September 2017 to November 2017 10
Table 5 Winter crop forecasts, New South Wales, 2017−18 13
Table 6 Summer crop forecasts, New South Wales, 2017−18 14
Table 7 Winter crop forecasts, Queensland, 2017−18 14
Table 8 Summer crop forecasts, Queensland, 2017−18 15
Table 9 Winter crop forecasts, Victoria, 2017–18 16
Table 10 Winter crop forecasts, South Australia, 2017–18 17
Table 11 Winter crop forecasts, Western Australia, 2017–18 17
Table 12 Winter crop production and area, Australia, 2015–16 to 2017–18 18
Table 13 Summer crop production and area, Australia, 2015–16 to 2017–18 18
Table 14 Production, major crops, Australian states, 2015–16 to 2017–18 19
Table 15 Production, other crops, Australian states, 2015–16 to 2017–18 21
Table 16 Supply and disposal of wheat, canola and pulses, Australia, 2011–12 to 2016–17 23
Table 17 Supply and disposal of coarse grains, Australia, 2011–12 to 2016–17 24
Table 18 Grain, oilseed and pulse prices, first quarter 2016 to third quarter 2017 25
Maps

Map 1 Australian rainfall percentages, spring 2017
Map 2 Upper layer soil moisture, as at 27 November 2017
Map 3 Lower layer soil moisture, as at 27 November 2017
Map 4 Rainfall outlook, December 2017 to February 2018
Map 5 Probability of exceeding long-term median grain sorghum yield
Map 6 Rainfall districts, Australia
National overview

Prospects for total winter crop production in Australia fell slightly during spring but there was significant regional variation. The condition of crops varied substantially at the start of spring and seasonal conditions during spring were mixed.

The two changes to state level crop prospects over spring with most significance for national level production were in Western Australia and New South Wales. In Western Australia, favourable seasonal conditions boosted crop prospects in all cropping regions. In the northern and central east cropping regions, crops were generally in very poor condition at the start of spring and the favourable finish to the season averted failure for many of these crops. In contrast, seasonal conditions were very unfavourable during spring in most New South Wales cropping regions and adversely affected crop prospects. Yields in most regions are expected to be well below average.

Crop prospects also deteriorated significantly in Queensland over spring but this change will have a much smaller effect on expected national production than the changes in Western Australia and New South Wales.

In Victoria and South Australia, regional changes to crop prospects over spring varied but changes to forecast state level production are relatively small.

Harvest is underway in many regions but progress has been slowed during November by rainfall events. According to the latest rainfall outlook, issued by the Bureau of Meteorology on 30 November 2017 December is likely to be wetter than average in south-east cropping regions.

Total winter crop production is forecast to decrease by 41 per cent in 2017–18 to 35.1 million tonnes, largely reflecting an expected fall in average yields from the exceptionally high yields of 2016–17. This is a downward revision of 3 per cent from the ABARES forecast published in the September 2017 edition of Australian crop report. This forecast production is 2 per cent below the 10-year average to 2015–16.

Production is forecast to fall in 2017–18 for the three major crops: wheat by 42 per cent to 20.3 million tonnes, barley by 40 per cent to 8.0 million tonnes and canola by 31 per cent to 2.9 million tonnes. Amongst other crops in 2017–18, chickpea production is forecast to decrease by 37 per cent to 1.3 million tonnes and oats production is forecast to fall by 44 per cent to 1.1 million tonnes.
Table 1 Winter crop production, Australia, 2007–08 to 2017–18

<table>
<thead>
<tr>
<th>Year</th>
<th>Unit</th>
<th>New South Wales</th>
<th>Victoria</th>
<th>Queensland</th>
<th>South Australia</th>
<th>Western Australia</th>
<th>Australia</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007–08</td>
<td>kt</td>
<td>3,999</td>
<td>4,692</td>
<td>1,194</td>
<td>4,706</td>
<td>10,761</td>
<td>25,415</td>
</tr>
<tr>
<td>2008–09</td>
<td>kt</td>
<td>9,438</td>
<td>3,887</td>
<td>2,326</td>
<td>4,863</td>
<td>13,785</td>
<td>34,378</td>
</tr>
<tr>
<td>2009–10</td>
<td>kt</td>
<td>7,787</td>
<td>5,889</td>
<td>1,617</td>
<td>7,035</td>
<td>12,943</td>
<td>35,344</td>
</tr>
<tr>
<td>2010–11</td>
<td>kt</td>
<td>14,784</td>
<td>7,625</td>
<td>1,821</td>
<td>9,316</td>
<td>8,044</td>
<td>41,672</td>
</tr>
<tr>
<td>2011–12</td>
<td>kt</td>
<td>11,952</td>
<td>7,352</td>
<td>2,329</td>
<td>7,371</td>
<td>16,600</td>
<td>37,934</td>
</tr>
<tr>
<td>2012–13</td>
<td>kt</td>
<td>11,123</td>
<td>6,886</td>
<td>2,156</td>
<td>6,470</td>
<td>11,243</td>
<td>39,470</td>
</tr>
<tr>
<td>2013–14</td>
<td>kt</td>
<td>9,773</td>
<td>6,773</td>
<td>1,516</td>
<td>7,221</td>
<td>16,510</td>
<td>37,487</td>
</tr>
<tr>
<td>2014–15</td>
<td>kt</td>
<td>10,445</td>
<td>5,117</td>
<td>1,464</td>
<td>7,439</td>
<td>14,662</td>
<td>39,197</td>
</tr>
<tr>
<td>2015–16</td>
<td>kt</td>
<td>11,624</td>
<td>3,568</td>
<td>2,104</td>
<td>6,105</td>
<td>14,206</td>
<td>37,687</td>
</tr>
<tr>
<td>2016–17 s</td>
<td>kt</td>
<td>16,570</td>
<td>10,330</td>
<td>3,304</td>
<td>11,157</td>
<td>18,041</td>
<td>59,463</td>
</tr>
<tr>
<td>2017–18 f</td>
<td>kt</td>
<td>7,278</td>
<td>7,018</td>
<td>1,447</td>
<td>6,403</td>
<td>12,910</td>
<td>35,111</td>
</tr>
</tbody>
</table>

% change 2016–17 to 2017–18:
-65, -32, -56, -43, -28, -41

* f ABARES forecast. s ABARES estimate.

Note: Includes barley, canola, chickpeas, faba beans, field peas, lentils, linseed, lupins, oats, safflower, triticale and wheat. Due to an ABS change in scope for agricultural data collections, crop production is shown for establishments with an estimated value of agricultural operations (EVAO) of $5,000 or more until 2014–15 and an EVAO of $40,000 or more from 2015–16.

Table 2 Winter crop area, Australia, 2007–08 to 2017–18

<table>
<thead>
<tr>
<th>Year</th>
<th>Unit</th>
<th>New South Wales</th>
<th>Victoria</th>
<th>Queensland</th>
<th>South Australia</th>
<th>Western Australia</th>
<th>Australia</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007–08</td>
<td>'000 ha</td>
<td>6,312</td>
<td>3,375</td>
<td>873</td>
<td>4,131</td>
<td>7,265</td>
<td>21,978</td>
</tr>
<tr>
<td>2008–09</td>
<td>'000 ha</td>
<td>6,295</td>
<td>3,492</td>
<td>1,208</td>
<td>3,979</td>
<td>7,899</td>
<td>22,901</td>
</tr>
<tr>
<td>2009–10</td>
<td>'000 ha</td>
<td>6,106</td>
<td>3,488</td>
<td>1,173</td>
<td>3,783</td>
<td>8,271</td>
<td>22,844</td>
</tr>
<tr>
<td>2010–11</td>
<td>'000 ha</td>
<td>6,158</td>
<td>3,457</td>
<td>1,217</td>
<td>3,821</td>
<td>7,715</td>
<td>22,392</td>
</tr>
<tr>
<td>2011–12</td>
<td>'000 ha</td>
<td>5,969</td>
<td>3,411</td>
<td>1,205</td>
<td>3,838</td>
<td>8,252</td>
<td>22,693</td>
</tr>
<tr>
<td>2012–13</td>
<td>'000 ha</td>
<td>5,852</td>
<td>3,457</td>
<td>1,222</td>
<td>3,776</td>
<td>8,097</td>
<td>22,421</td>
</tr>
<tr>
<td>2013–14</td>
<td>'000 ha</td>
<td>5,314</td>
<td>3,283</td>
<td>1,105</td>
<td>3,448</td>
<td>8,249</td>
<td>21,420</td>
</tr>
<tr>
<td>2014–15</td>
<td>'000 ha</td>
<td>5,491</td>
<td>3,304</td>
<td>995</td>
<td>3,639</td>
<td>8,313</td>
<td>21,760</td>
</tr>
<tr>
<td>2015–16</td>
<td>'000 ha</td>
<td>5,375</td>
<td>2,915</td>
<td>1,049</td>
<td>3,152</td>
<td>7,771</td>
<td>20,283</td>
</tr>
<tr>
<td>2016–17 s</td>
<td>'000 ha</td>
<td>5,869</td>
<td>3,370</td>
<td>1,337</td>
<td>3,523</td>
<td>8,442</td>
<td>22,558</td>
</tr>
<tr>
<td>2017–18 f</td>
<td>'000 ha</td>
<td>5,694</td>
<td>3,398</td>
<td>1,309</td>
<td>3,621</td>
<td>8,354</td>
<td>22,393</td>
</tr>
</tbody>
</table>

% change 2016–17 to 2017–18:
-3, -1, -2, 3, -1, -1

* f ABARES forecast. s ABARES estimate.

Note: Includes barley, canola, chickpeas, faba beans, field peas, lentils, linseed, lupins, oats, safflower, triticale and wheat. Due to an ABS change in scope for agricultural data collections, crop production is shown for establishments with an estimated value of agricultural operations (EVAO) of $5,000 or more until 2014–15 and an EVAO of $40,000 or more from 2015–16.
Total area planted to **summer crops** is forecast to increase by 13 per cent to 1.5 million hectares in 2017–18, which reflects a more favourable opening to the summer crop season for grain sorghum than in 2016–17. In particular, rainfall in October and November increased soil moisture levels. However, because soil moisture levels were very low in many summer cropping regions at the start of spring, further rainfall will be required during the planting window for planting intentions to be realised. Total summer crop production is forecast to increase by 23 per cent to around 4.8 million tonnes.

According to the latest three-month rainfall outlook (December to February), issued by the Bureau of Meteorology on 30 November 2017, there is no strong tendency toward either a wetter or drier than average summer in all cropping regions. Given this, ABARES has assumed average rainfall over summer in the summer cropping regions.

Area planted to **grain sorghum** is forecast to increase by 61 per cent to 636,000 hectares. Area planted to grain sorghum in 2016–17 was low because of expected higher returns from growing cotton. Grain sorghum production is forecast to increase by 95 per cent to around 2.0 million tonnes.

Area planted to **cotton** is forecast to fall by 10 per cent in 2017–18 to 500,000 hectares. Area planted to irrigated cotton is forecast to fall by 8 per cent to 394,000 hectares because of a fall in the supply of irrigation water available to cotton growers. As at 23 November 2017, the average storage level in public irrigation dams serving cotton-growing regions was around 59 per cent of capacity. This is significantly below the 73 per cent on the same date in 2016. Area planted to dryland cotton is forecast to fall by 17 per cent to 106,000 hectares because of low levels of soil moisture early in the planting window. Despite the fall in planted area, cotton production is forecast to increase by 4 per cent to 968,000 tonnes of cotton lint and 1.4 million tonnes of cottonseed. This largely reflects a forecast increase in irrigated cotton yields.

Area planted to **rice** is forecast to fall by 2 per cent in 2017–18 to 80,000 hectares. Planting conditions have been favourable, and supplies of irrigation water have been sufficient to realise rice planting intentions. Rice production is forecast to decline by 1 per cent to 800,000 tonnes.
Table 3 Summer crop area and production, Australia, 2007–08 to 2017–18

<table>
<thead>
<tr>
<th>Year</th>
<th>New South Wales</th>
<th>Queensland</th>
<th>Australia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>'000 ha</td>
<td>kt</td>
<td>'000 ha</td>
</tr>
<tr>
<td>2007–08</td>
<td>398</td>
<td>1,668</td>
<td>791</td>
</tr>
<tr>
<td>2008–09</td>
<td>402</td>
<td>1,430</td>
<td>746</td>
</tr>
<tr>
<td>2009–10</td>
<td>381</td>
<td>1,405</td>
<td>514</td>
</tr>
<tr>
<td>2010–11</td>
<td>713</td>
<td>2,514</td>
<td>790</td>
</tr>
<tr>
<td>2011–12</td>
<td>757</td>
<td>3,064</td>
<td>783</td>
</tr>
<tr>
<td>2012–13</td>
<td>712</td>
<td>3,205</td>
<td>687</td>
</tr>
<tr>
<td>2013–14</td>
<td>568</td>
<td>2,317</td>
<td>559</td>
</tr>
<tr>
<td>2014–15</td>
<td>435</td>
<td>2,044</td>
<td>696</td>
</tr>
<tr>
<td>2015–16</td>
<td>412</td>
<td>1,656</td>
<td>624</td>
</tr>
<tr>
<td>2016–17</td>
<td>687</td>
<td>2,314</td>
<td>594</td>
</tr>
<tr>
<td>2017–18</td>
<td>684</td>
<td>2,675</td>
<td>770</td>
</tr>
</tbody>
</table>

% change 2016–17 to 2017–18

<table>
<thead>
<tr>
<th>Year</th>
<th>New South Wales</th>
<th>Queensland</th>
<th>Australia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>'000 ha</td>
<td>kt</td>
<td>'000 ha</td>
</tr>
<tr>
<td>2016–17</td>
<td>0</td>
<td>16</td>
<td>30</td>
</tr>
</tbody>
</table>

f ABARES forecast. s ABARES estimate.

Note: State production includes cottonseed, grain sorghum, corn (maize), mung beans, rice, peanuts, soybeans and sunflowers. Total for Australia also includes navy beans and small areas and volumes of summer crops in other states.
Climatic and agronomic conditions

Late winter and early spring rainfall was higher than average across much of Western Australia in 2017. In contrast, there was record low rainfall and above average daytime temperatures during September in New South Wales and Queensland.

While daytime temperatures during spring were generally above average in most cropping regions, numerous lowest minimum temperature and maximum temperature records were set in eastern Australia in September. In central and southern cropping regions in Western Australia mild temperature and abundant soil moisture levels during October and early November extended the grain fill period and added up to a month to the growing season.

Rainfall percentiles for spring 2017 as a whole were generally below average to average across most cropping regions in New South Wales, Victoria, South Australia and Western Australia (Map 1). While Queensland cropping regions experienced average to well above average rainfall during spring, this was the result of very much above average rainfall during October. November rainfall was more variable and drier than average across summer cropping regions in Queensland and New South Wales with most regions receiving between 40 and 80 per cent of the November average.

Map 1 Australian rainfall percentages, spring 2017

Note: Rainfall percentages are displayed for wheat–sheep zone only. Spatial rainfall percentage analyses are based on historical monthly rainfall data provided by the Bureau of Meteorology. Percentages between 0 per cent and 100 per cent indicate lower than average rainfall, while percentages greater than 100 per cent indicate higher than average rainfall. The rainfall percentage maps are generated from monthly means, calculated for each calendar month for the period 1961 to 1990.

Source: Bureau of Meteorology

Map 2 and Map 3 show the relative levels of modelled upper layer (surface to 0.1 metres) and lower layer (~0.1 to ~1 metres) soil moisture for cropping zones across Australia as at 27 November 2017. Upper layer soil moisture responds quickly to seasonal conditions and will
often show a pattern that reflects rainfall and temperature events in the days leading up to the analysis date. Lower layer soil moisture is a larger, deeper store that is slower to respond to seasonal conditions and tends to reflect the accumulated effects of events that have occurred over longer periods.

Upper layer soil moisture levels as at 27 November 2017 were generally average to above average for most of the summer cropping regions in Queensland and New South Wales (Map 2). Conversely, in the south-eastern corner of Queensland upper layer soil moisture was well below average.

Map 2 Upper layer soil moisture, as at 27 November 2017

Lower layer soil moisture as at 27 November 2017 was average to above average in Queensland summer cropping regions, with the exception of far south-eastern regions which continue to show extremely low levels. In New South Wales, lower layer soil moisture was more variable but generally average in summer cropping regions, with both above and below average areas of lower layer soil moisture throughout (Map 3). Crop development in areas of above average lower layer soil moisture will be less reliant on rainfall during summer. Conversely, those areas with below average lower layer soil moisture will require timely in-crop rainfall to support crops through to harvest.
Map 3 Lower layer soil moisture, as at 27 November 2017

Note: Relative lower layer soil moisture is displayed for summer cropping regions only. Soil moisture estimates are relative to the long-term record and ranked in percentiles. Estimates are used to compare the lower layer soil moisture as at 27 November 2017 and are ranked according to percentiles for that same day during the entire historical record (1911–2016). The extremely high band indicates where the estimated soil moisture level for 27 November 2017 was in the wettest 10 per cent of estimated soil moisture levels for 27 November during the 1911–2016 reference period. The extremely low band indicates where the estimated soil moisture level for 27 November 2017 was in the driest 10 per cent of estimated soil moisture levels for 27 November during the 1911–2016 reference period. These data are from the Australian Water Resources Assessment Landscape model (AWRA-L version 5.0), which was developed through the Water Information Research and Development Alliance (WIRADA) initiative. WIRADA is a collaborative project between the BoM and the CSIRO.

Source: Bureau of Meteorology

According to the latest three-month rainfall outlook (December to February), issued by the Bureau of Meteorology on 30 November 2017, there is no strong tendency toward either a wetter or drier than average summer in cropping regions in New South Wales and Queensland (Map 4).

There is a similar outlook for maximum and minimum temperatures for summer 2017–18, where there is no strong tendencies towards cooler or hotter than average daytime temperature in cropping regions in New South Wales and Queensland.
Map 4 Rainfall outlook, December 2017 to February 2018

Note: Rainfall outlook is displayed for summer cropping regions only. The map shows the likelihood of exceeding the 1981–2010 median rainfall. Median rainfall is defined as the 50th percentile calculated from the 1981–2010 reference period. Source: Bureau of Meteorology

Map 5 shows the shire-scale forecast of grain sorghum yields obtained from the University of Queensland’s Queensland Alliance for Agriculture and Food Innovation (QAAFI). These forecasts are based on soil moisture conditions and the seasonal outlook, including the most recent trend in the Southern Oscillation Index (SOI). It is important to note that final sorghum crop yield is affected more by in-crop rainfall and temperatures during crop growth than by the soil moisture at time of sowing.

At the beginning of November 2017, the forecast indicated a generally positive outlook for the 2017–18 sorghum crop. Areas in central Queensland and southern sorghum growing areas of New South Wales showed between 60 and 100 per cent chance of exceeding the median shire sorghum yield. Parts of southern Queensland and most of northern New South Wales showed between 40 and 50 per cent chance of exceeding the long-term median shire sorghum yield. However, the forecast was made early in the growing season and a wide range of possible yields exist.
Map 5 Probability of exceeding long-term median grain sorghum yield

Note: Probability of exceeding the long-term sorghum yield, given SOI phase was “rapidly falling” in the September to October period.
Source: Queensland Alliance for Agriculture and Food Innovation
Table 4 Rainfall in major cropping districts, median and actual, September 2017 to November 2017

<table>
<thead>
<tr>
<th>District</th>
<th>District no.</th>
<th>September median mm</th>
<th>September 2017 mm</th>
<th>October median mm</th>
<th>October 2016 mm</th>
<th>November median mm</th>
<th>November 2017 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>New South Wales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NW Plains (W)</td>
<td>52</td>
<td>21</td>
<td>2</td>
<td>32</td>
<td>64</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>NW Plains (E)</td>
<td>53</td>
<td>29</td>
<td>2</td>
<td>40</td>
<td>92</td>
<td>51</td>
<td>57</td>
</tr>
<tr>
<td>NW Slopes (N)</td>
<td>54</td>
<td>36</td>
<td>3</td>
<td>53</td>
<td>124</td>
<td>63</td>
<td>58</td>
</tr>
<tr>
<td>NW Slopes (S)</td>
<td>55</td>
<td>41</td>
<td>7</td>
<td>54</td>
<td>77</td>
<td>66</td>
<td>69</td>
</tr>
<tr>
<td>N Tablelands (N)</td>
<td>56</td>
<td>46</td>
<td>6</td>
<td>69</td>
<td>132</td>
<td>82</td>
<td>65</td>
</tr>
<tr>
<td>CW Plains (S)</td>
<td>50</td>
<td>27</td>
<td>4</td>
<td>30</td>
<td>55</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>CW Plains (N)</td>
<td>51</td>
<td>21</td>
<td>3</td>
<td>28</td>
<td>68</td>
<td>33</td>
<td>30</td>
</tr>
<tr>
<td>CW Slopes (N)</td>
<td>64</td>
<td>35</td>
<td>5</td>
<td>44</td>
<td>66</td>
<td>50</td>
<td>48</td>
</tr>
<tr>
<td>CW Slopes (S)</td>
<td>65</td>
<td>39</td>
<td>10</td>
<td>42</td>
<td>59</td>
<td>43</td>
<td>49</td>
</tr>
<tr>
<td>CT Tablelands (N)</td>
<td>62</td>
<td>41</td>
<td>5</td>
<td>48</td>
<td>45</td>
<td>61</td>
<td>67</td>
</tr>
<tr>
<td>CT Tablelands (S)</td>
<td>63</td>
<td>54</td>
<td>17</td>
<td>64</td>
<td>62</td>
<td>62</td>
<td>64</td>
</tr>
<tr>
<td>Riverina (W)</td>
<td>75</td>
<td>26</td>
<td>3</td>
<td>26</td>
<td>37</td>
<td>22</td>
<td>32</td>
</tr>
<tr>
<td>Riverina (E)</td>
<td>74</td>
<td>35</td>
<td>5</td>
<td>38</td>
<td>52</td>
<td>34</td>
<td>39</td>
</tr>
<tr>
<td>SW Slopes (N)</td>
<td>73</td>
<td>51</td>
<td>11</td>
<td>49</td>
<td>53</td>
<td>48</td>
<td>69</td>
</tr>
<tr>
<td>SW Slopes (S)</td>
<td>72</td>
<td>95</td>
<td>47</td>
<td>95</td>
<td>68</td>
<td>74</td>
<td>88</td>
</tr>
<tr>
<td>Victoria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N Mallee</td>
<td>76</td>
<td>24</td>
<td>8</td>
<td>25</td>
<td>25</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>S Mallee</td>
<td>77</td>
<td>33</td>
<td>16</td>
<td>29</td>
<td>26</td>
<td>24</td>
<td>41</td>
</tr>
<tr>
<td>N Wimmera</td>
<td>78</td>
<td>41</td>
<td>28</td>
<td>34</td>
<td>39</td>
<td>26</td>
<td>35</td>
</tr>
<tr>
<td>S Wimmera</td>
<td>79</td>
<td>56</td>
<td>50</td>
<td>46</td>
<td>44</td>
<td>32</td>
<td>47</td>
</tr>
<tr>
<td>Lower North</td>
<td>80</td>
<td>34</td>
<td>11</td>
<td>33</td>
<td>23</td>
<td>29</td>
<td>46</td>
</tr>
<tr>
<td>Upper North</td>
<td>81</td>
<td>47</td>
<td>17</td>
<td>43</td>
<td>37</td>
<td>34</td>
<td>42</td>
</tr>
<tr>
<td>Lower North East</td>
<td>82</td>
<td>95</td>
<td>54</td>
<td>95</td>
<td>101</td>
<td>66</td>
<td>62</td>
</tr>
<tr>
<td>North Central</td>
<td>88</td>
<td>72</td>
<td>51</td>
<td>71</td>
<td>53</td>
<td>55</td>
<td>56</td>
</tr>
<tr>
<td>Western Plains</td>
<td>89</td>
<td>64</td>
<td>69</td>
<td>58</td>
<td>49</td>
<td>48</td>
<td>61</td>
</tr>
<tr>
<td>West Coast</td>
<td>90</td>
<td>81</td>
<td>121</td>
<td>68</td>
<td>53</td>
<td>53</td>
<td>67</td>
</tr>
<tr>
<td>Queensland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Highlands</td>
<td>35</td>
<td>13</td>
<td>0</td>
<td>38</td>
<td>118</td>
<td>54</td>
<td>39</td>
</tr>
<tr>
<td>Maranoa</td>
<td>43</td>
<td>17</td>
<td>0</td>
<td>37</td>
<td>117</td>
<td>54</td>
<td>55</td>
</tr>
<tr>
<td>W Darling Downs</td>
<td>42</td>
<td>22</td>
<td>0</td>
<td>46</td>
<td>120</td>
<td>50</td>
<td>56</td>
</tr>
<tr>
<td>E Darling Downs</td>
<td>41</td>
<td>30</td>
<td>1</td>
<td>53</td>
<td>111</td>
<td>58</td>
<td>35</td>
</tr>
<tr>
<td>Moreton S Coast</td>
<td>40</td>
<td>35</td>
<td>5</td>
<td>65</td>
<td>231</td>
<td>79</td>
<td>77</td>
</tr>
</tbody>
</table>

continued ...
The table below shows the rainfall in major cropping districts, median and actual, September 2017 to November 2017:

<table>
<thead>
<tr>
<th>District</th>
<th>September 2017</th>
<th>October 2016</th>
<th>November 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Australia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper South East</td>
<td>25B</td>
<td>48</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>31</td>
<td>28</td>
</tr>
<tr>
<td>Murray Mallee</td>
<td>25A</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td>Murray River</td>
<td>24</td>
<td>27</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>23</td>
<td>15</td>
</tr>
<tr>
<td>East Central</td>
<td>23</td>
<td>62</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>48</td>
<td>28</td>
</tr>
<tr>
<td>Yorke Peninsula</td>
<td>22A</td>
<td>40</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>31</td>
<td>22</td>
</tr>
<tr>
<td>Lower North</td>
<td>21</td>
<td>39</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>28</td>
<td>17</td>
</tr>
<tr>
<td>Upper North</td>
<td>19</td>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>Western Agricultural</td>
<td>18</td>
<td>19</td>
<td>11</td>
</tr>
<tr>
<td>Western Australia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Coast</td>
<td>8</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>Central Coast</td>
<td>9</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>41</td>
<td>26</td>
</tr>
<tr>
<td>Northern Central</td>
<td>10</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>South Central</td>
<td>10A</td>
<td>38</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td>South East</td>
<td>12</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>11</td>
<td>18</td>
</tr>
</tbody>
</table>

Note: Median rainfall is calculated over the period 1900 to May 2017. See Map 6 for Australian rainfall districts.

Map 6: Rainfall districts, Australia

Note: Displayed for major cropping districts only. See Table 4 for district names and observed district rainfall.

Source: Bureau of Meteorology
Crop conditions and production forecasts, by state

New South Wales

May to October rainfall was below to very much below average in most winter cropping regions in New South Wales. Many crops in the north-west cropping region had already failed by the end of winter and many crops in the central west cropping region needed favourable seasonal conditions in early spring to avert failure. However, rainfall during September was below average and temperatures above average. Additionally there were frost events in late August and early spring that adversely affected crop development in many regions. As a result of the unfavourable seasonal conditions, yields in most regions are forecast to be significantly below average.

October rainfall boosted crop prospects in the south-east cropping region and yields in this region are forecast to be close to average but this rainfall was too late to benefit crops in most other regions. November rainfall has resulted in harvest delays and caused further damage to some crops. According to the latest rainfall outlook issued by the Bureau of Meteorology on 30 November 2017 December is likely to be wetter than average in southern NSW cropping regions. Ongoing rainfall in December may adversely affect crop quality.

Winter crop production in New South Wales is forecast to decrease by 56 per cent in 2017–18 to around 7.3 million tonnes, largely reflecting a fall in yields from the record high yields of 2016–17 to below average yields in 2017–18. Average yields are expected to fall because of generally unfavourable seasonal conditions during the winter crop season.

In 2017–18 wheat production is forecast to decrease by 58 per cent to around 4.8 million tonnes, the smallest wheat crop since 2007–08. The average yield is forecast to decrease by 55 per cent to 1.5 tonnes per hectare and area planted to wheat is estimated to have fallen by 6 per cent to 3.3 million hectares.

Barley production in 2017–18 is estimated to fall by 56 per cent to 1.2 million tonnes. The average yield is forecast to be 1.5 tonnes per hectare, 26 per cent below the 10-year average to 2016–17. Area planted to barley is estimated to have fallen by 9 per cent to 790,000 hectares.

Canola production is forecast to fall by 52 per cent in 2017–18 to around 403,000 tonnes, despite an estimated 22 per cent increase in planted area to 620,000 hectares. The average canola yield is forecast to fall by 61 per cent to 0.7 tonnes per hectare. Some frost affected crops were cut for hay while some others will be harvested for seed recovery only.
Table 5 Winter crop forecasts, New South Wales, 2017–18

<table>
<thead>
<tr>
<th>Crop</th>
<th>Area ('000 ha)</th>
<th>Yield (t/ha)</th>
<th>Production (kt)</th>
<th>Area change (%)</th>
<th>Prod. change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>3,300</td>
<td>1.45</td>
<td>4,785</td>
<td>–6</td>
<td>–58</td>
</tr>
<tr>
<td>Barley</td>
<td>790</td>
<td>1.50</td>
<td>1,185</td>
<td>–9</td>
<td>–56</td>
</tr>
<tr>
<td>Canola</td>
<td>620</td>
<td>0.65</td>
<td>403</td>
<td>22</td>
<td>–52</td>
</tr>
</tbody>
</table>

Note: Yields are based on area planted.

In 2017–18 area planted to summer crops in New South Wales is forecast to decrease marginally to 684,000 hectares. Total summer crop production in New South Wales is forecast to increase by 16 per cent to 2.7 million tonnes.

According to the latest three-month rainfall outlook (December to February), issued by the Bureau of Meteorology on 30 November 2017, there is no strong tendency toward either a wetter or drier than average summer in northern New South Wales. Given this, ABARES has assumed average rainfall over summer. If rainfall is below average, planting intentions for dry land summer crops and the forecast yields may not be realised.

In 2017–18 area planted to grain sorghum is forecast to be around 200,000 hectares—slightly above the 10 year average to 2016–17. October and November rainfall increased soil moisture levels across northern New South Wales and was timely for the sowing of summer crops. However, because soil moisture levels were very low in many regions, further rainfall during the planting window will be critical for planting intentions to be fully realised, particularly in the north-west cropping region. Assuming yields increase from the drought affected yields of 2016-17 to the longer term average of around 3.5 tonnes per hectare, grain sorghum production is forecast to increase by 94 per cent in 2017–18 to around 706,000 tonnes.

Area planted to cotton is forecast to fall by 16 per cent to 310,000 hectares in 2017–18. Area planted to irrigated cotton is expected to decline by 12 per cent to 262,000 hectares and area planted to dryland cotton expected to decline by 33 per cent to 48,000 hectares. Production is forecast to increase by 4 per cent to 640,000 tonnes of cotton lint and around 905,000 tonnes of cottonseed largely because of a forecast increase in the yield for irrigated cotton.

Area planted to rice is forecast to fall by 2 per cent in 2017–18 to 78,000 hectares. Planting conditions have been favourable, and supplies of irrigation water have been sufficient to realise rice planting intentions. Rice production is forecast to decline by 1 per cent to 790,000 tonnes.
Table 6 Summer crop forecasts, New South Wales, 2017–18

<table>
<thead>
<tr>
<th>Crop</th>
<th>Area '000 ha</th>
<th>Yield t/ha</th>
<th>Production kt</th>
<th>Area change %</th>
<th>Prod. change %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain sorghum</td>
<td>200</td>
<td>3.53</td>
<td>706</td>
<td>48</td>
<td>94</td>
</tr>
<tr>
<td>Cotton lint</td>
<td>310</td>
<td>2.06</td>
<td>640</td>
<td>–16</td>
<td>4</td>
</tr>
<tr>
<td>Cottonseed</td>
<td>310</td>
<td>2.92</td>
<td>905</td>
<td>–16</td>
<td>4</td>
</tr>
<tr>
<td>Rice</td>
<td>78</td>
<td>10.14</td>
<td>790</td>
<td>–2</td>
<td>–1</td>
</tr>
</tbody>
</table>

Note: Yields are based on area planted, except Cotton which is based on area harvested.

Queensland

Seasonal conditions have been generally unfavourable for Queensland winter crops in 2017–18. Winter and spring rainfall was generally well below average across all major cropping regions in Queensland. Above average rainfall in October was generally too late to benefit most winter crops but some late planted crops in parts in southern Queensland did benefit. Additionally, daytime temperatures were generally well above average and some crops were adversely affected by significant frost events in August.

Harvesting of winter crops in Queensland is now largely complete, with total winter crop production in 2017–18 expected to fall by 56 per cent to 1.4 million tonnes. The decline in production largely reflects a fall in yields from the record high yields of 2016–17 to below average yields in 2017–18. Early planted crops in central Queensland generally fared better than other crops, with cropping outcomes in south-west Queensland having been particularly poor. An above average share of planted area was not harvested because of the unfavourable seasonal conditions.

Wheat production in 2017–18 is forecast to fall by 59 per cent to 735,000 tonnes, largely as a result of a 56 per cent decline in the average yield. Wheat crops generally achieved high levels of protein but there have been some reports of low test weights and low falling number values (downgrading what would have been high-quality milling wheat).

In 2017–18 chickpea production is forecast to decrease by 51 per cent to 565,000 tonnes, driven by an expected 53 per cent fall in the average yield. Chickpeas in central Queensland generally fared better than elsewhere, with earlier planted crops better able to cope with the below average rainfall.

Table 7 Winter crop forecasts, Queensland, 2017–18

<table>
<thead>
<tr>
<th>Crop</th>
<th>Area '000 ha</th>
<th>Yield t/ha</th>
<th>Production kt</th>
<th>Area change %</th>
<th>Prod. change %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>610</td>
<td>1.20</td>
<td>735</td>
<td>–6</td>
<td>–59</td>
</tr>
<tr>
<td>Barley</td>
<td>88</td>
<td>1.42</td>
<td>125</td>
<td>–7</td>
<td>–58</td>
</tr>
<tr>
<td>Chickpeas</td>
<td>575</td>
<td>0.98</td>
<td>565</td>
<td>5</td>
<td>–51</td>
</tr>
</tbody>
</table>

Note: Yields are based on area planted.

Area planted to summer crops in 2017–18 is forecast to increase by 30 per cent to 770,000 hectares, driven by an increase in area planted to grain sorghum. Total summer crop production is forecast to rise by 39 per cent to 2.1 million tonnes.
Seasonal conditions over summer will be critical to realising planting intentions and forecast yields. According to the latest three-month climate outlook (December to February), issued by the Bureau of Meteorology on 30 November 2017, there is no strong tendency toward higher or lower than average rainfall and daytime temperatures in all summer cropping regions in Queensland.

In 2017–18 area planted to **grain sorghum** is forecast to increase by 67 per cent to 435,000 hectares. The area planted was well below average in 2016–17, reflecting unfavourable planting conditions and higher expected returns from growing dryland cotton. Grain sorghum production is forecast to increase by 95 per cent in 2017–18 to 1.3 million tonnes.

In 2017–18 area planted to **cotton** is forecast to rise by 2 per cent to 190,000 hectares. Area planted to irrigated cotton is expected to increase by 1 per cent to 132,000 hectares and area planted to dryland cotton is expected to increase by 4 per cent to 58,000 hectares. Cotton production is forecast to increase by 3 per cent to 328,000 tonnes of cotton lint and around 464,000 tonnes of cottonseed in 2017–18. The average yield is forecast to increase by 2 per cent.

Table 8 Summer crop forecasts, Queensland, 2017–18

<table>
<thead>
<tr>
<th>Crop</th>
<th>Area '000 ha</th>
<th>Yield t/ha</th>
<th>Production kt</th>
<th>Area change %</th>
<th>Prod. change %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain sorghum</td>
<td>435</td>
<td>2.92</td>
<td>1,270</td>
<td>67</td>
<td>95</td>
</tr>
<tr>
<td>Cotton lint</td>
<td>190</td>
<td>1.73</td>
<td>328</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Cottonseed</td>
<td>190</td>
<td>2.44</td>
<td>464</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: Yields are based on area planted, except Cotton which is based on area harvested.

Victoria

Seasonal conditions were variable in Victoria during spring after winter conditions were generally favourable. Rainfall in September was well below average for the Mallee and Central regions and reduced crop prospects. In contrast, September rainfall in the southern Wimmera and western regions was around average. Yield prospects across the state were supported during spring by high levels of soil moisture following above average rainfall in August and October.

Frost events in early November are expected to reduce yields for some Victorian winter crops, particularly pulses. Harvest is currently underway in Victoria but has been delayed by rainfall events in November. According to the latest rainfall outlook issued by the Bureau of Meteorology on 30 November 2017 December is likely to be wetter than average in Victorian cropping regions.

Total **winter crop** production in 2017–18 is forecast to fall by 32 per cent to around 7.0 million tonnes, reflecting a fall in average yields following the exceptional yields of 2016–17. This forecast production is 13 per cent above the 10-year average to 2016–17.

Wheat production is forecast to decrease by 32 per cent to 3.6 million tonnes in 2017–18, driven by a significant fall in the average yield. Planted area is estimated to be unchanged from the previous year.

Barley production is forecast to fall by 36 per cent to around 2.1 million tonnes in 2017–18. Planted area is estimated to have decreased by 4 per cent and the average yield is forecast to fall by 33 per cent.
Canola production is forecast to fall by 6 per cent in 2017–18 to 660,000 tonnes. An estimated 18 per cent increase in area planted is expected to be more than offset by a 20 per cent fall in the average yield.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Area '000 ha</th>
<th>Yield t/ha</th>
<th>Production kt</th>
<th>Area change %</th>
<th>Prod. Change %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>1,550</td>
<td>2.29</td>
<td>3,550</td>
<td>0</td>
<td>-32</td>
</tr>
<tr>
<td>Barley</td>
<td>900</td>
<td>2.28</td>
<td>2,050</td>
<td>-4</td>
<td>-36</td>
</tr>
<tr>
<td>Canola</td>
<td>420</td>
<td>1.57</td>
<td>660</td>
<td>18</td>
<td>-6</td>
</tr>
</tbody>
</table>

Note: Yields are based on area planted.

South Australia

Seasonal conditions were variable in cropping regions in South Australia during spring. In southern areas including the lower Eyre Peninsula, Yorke Peninsula and the south-east, rainfall was average in September which assisted crop flowering. However, in northern areas of the Eyre Peninsula, the upper north and northern Murray Mallee regions, rainfall was well below average and daytime temperatures were above average. These unfavourable conditions reduced soil moisture levels and hampered crop development during spring in these regions. October rainfall was average in most cropping regions but there was below average rainfall in some parts of the Yorke Peninsula and the mid-north. Strong winds, hail and frost damage during October and November adversely affected crop prospects in some regions.

Harvest is underway across the state but rainfall events during November slowed progress. According to the latest rainfall outlook issued by the Bureau of Meteorology on 30 November 2017 December is likely to be wetter than average in South Australian cropping regions in the east of the state.

In 2017–18 total winter crop production in South Australia is forecast to decrease by 43 per cent to 6.4 million tonnes, driven by large declines in yields from the high yields of 2016–17. This forecast production is 1 per cent above the 10-year average to 2015–16.

Wheat production is forecast to decrease by 45 per cent to 3.7 million tonnes, reflecting a decrease in the average yield to around 1.9 tonnes per hectare, down from 3.3 tonnes per hectare in 2016–17.

Barley production is forecast to decrease by 45 per cent to 1.7 million tonnes. Late sown crops on northern Eyre Peninsula were adversely affected by below average rainfall during September and are expected to achieve lower yields than earlier sown crops.

Canola production is forecast to decrease by 36 per cent to 250,000 tonnes, largely as a result of a 39 per cent decrease in the average yield. Canola crops were severely affected by unfavourable conditions in early spring which hampered flowering.
Western Australia

There was a cool mild finish to the winter crop season in Western Australia following widespread above average rainfall in August. These conditions were favourable for crop development in the vital grain fill period. Crops in the central west and southern regions are expected to achieve average to above average yields after being in generally good condition at the start of spring. The favourable finish boosted crops prospects in the northern and central east regions after these crops were generally in very poor condition at the start of spring.

Harvest is around 50 per cent complete in Western Australia despite rainfall events during November slowing harvest in many regions. The late rainfall is not expected to result in significant crop quality issues. According to the latest three-month rainfall outlook (December to February), issued by the Bureau of Meteorology on 30 November 2017, there is no strong tendency toward either a wetter or drier than average summer in all cropping regions in Western Australia.

In 2017–18 total winter crop production in Western Australia is forecast to decrease by 28 per cent to 12.9 million tonnes, driven by large declines in yields from the very high yields of 2016–17. This forecast production is 2 per cent above the 10-year average to 2015–16.

Wheat production is forecast to decrease by 25 per cent to 7.5 million tonnes. This largely reflects a decrease in the average yield to around 1.5 tonnes per hectare, down from 2.0 tonnes per hectare in 2016–17.

Barley production is forecast to decrease by 29 per cent to 3.0 million tonnes as a result of a 31 per cent decrease in the average yield.

Canola production is forecast to decrease by 30 per cent to 1.5 million tonnes as a result of a 36 per cent decrease in the average yield. Area planted to canola is estimated to have risen by 9 per cent due to favourable expected returns.

Table 10 Winter crop forecasts, South Australia, 2017–18

<table>
<thead>
<tr>
<th>Crop</th>
<th>Area '000 ha</th>
<th>Yield t/ha</th>
<th>Production kt</th>
<th>Area change %</th>
<th>Prod. change %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>1,970</td>
<td>1.85</td>
<td>3,650</td>
<td>–2</td>
<td>–45</td>
</tr>
<tr>
<td>Barley</td>
<td>790</td>
<td>2.09</td>
<td>1,650</td>
<td>–1</td>
<td>–45</td>
</tr>
<tr>
<td>Canola</td>
<td>222</td>
<td>1.13</td>
<td>250</td>
<td>6</td>
<td>–36</td>
</tr>
</tbody>
</table>

Note: Yields are based on area planted.

Table 11 Winter crop forecasts, Western Australia, 2017–18

<table>
<thead>
<tr>
<th>Crop</th>
<th>Area '000 ha</th>
<th>Yield t/ha</th>
<th>Production kt</th>
<th>Area change %</th>
<th>Prod. change %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>5,000</td>
<td>1.50</td>
<td>7,520</td>
<td>–2</td>
<td>–25</td>
</tr>
<tr>
<td>Barley</td>
<td>1,348</td>
<td>2.20</td>
<td>2,963</td>
<td>2</td>
<td>–29</td>
</tr>
<tr>
<td>Canola</td>
<td>1,346</td>
<td>1.14</td>
<td>1,537</td>
<td>9</td>
<td>–30</td>
</tr>
<tr>
<td>Lupins</td>
<td>350</td>
<td>1.04</td>
<td>365</td>
<td>–3</td>
<td>–55</td>
</tr>
</tbody>
</table>

Note: Yields are based on area planted.
Statistical tables

Table 12 Winter crop production and area, Australia, 2015–16 to 2017–18

<table>
<thead>
<tr>
<th>Crop</th>
<th>Area 2015–16 '000 ha</th>
<th>Area 2016–17 s '000 ha</th>
<th>Area 2017–18 f '000 ha</th>
<th>Production 2015–16 kt</th>
<th>Production 2016–17 s kt</th>
<th>Production 2017–18 f kt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>11,282</td>
<td>12,832</td>
<td>12,437</td>
<td>22,275</td>
<td>35,009</td>
<td>20,270</td>
</tr>
<tr>
<td>Barley</td>
<td>4,108</td>
<td>4,035</td>
<td>3,920</td>
<td>8,992</td>
<td>13,414</td>
<td>7,990</td>
</tr>
<tr>
<td>Canola</td>
<td>2,091</td>
<td>2,318</td>
<td>2,612</td>
<td>2,775</td>
<td>4,136</td>
<td>2,852</td>
</tr>
<tr>
<td>Chickpeas</td>
<td>677</td>
<td>1,069</td>
<td>1,294</td>
<td>875</td>
<td>2,004</td>
<td>1,265</td>
</tr>
<tr>
<td>Faba beans</td>
<td>220</td>
<td>233</td>
<td>212</td>
<td>301</td>
<td>484</td>
<td>270</td>
</tr>
<tr>
<td>Field peas</td>
<td>238</td>
<td>230</td>
<td>222</td>
<td>205</td>
<td>415</td>
<td>273</td>
</tr>
<tr>
<td>Lentils</td>
<td>225</td>
<td>306</td>
<td>348</td>
<td>182</td>
<td>830</td>
<td>479</td>
</tr>
<tr>
<td>Lupins</td>
<td>534</td>
<td>515</td>
<td>520</td>
<td>652</td>
<td>1,031</td>
<td>546</td>
</tr>
<tr>
<td>Oats</td>
<td>821</td>
<td>914</td>
<td>742</td>
<td>1,300</td>
<td>1,873</td>
<td>1,052</td>
</tr>
<tr>
<td>Triticale</td>
<td>78</td>
<td>99</td>
<td>77</td>
<td>127</td>
<td>255</td>
<td>107</td>
</tr>
</tbody>
</table>

f ABARES forecast. s ABARES estimate.

Note: Crop year refers to crops planted during the 12 months to 31 March. Slight discrepancies may appear between tables as a result of including the Northern Territory and Australian Capital Territory in Australian totals.

Sources: ABARES; Australian Bureau of Statistics; Pulse Australia

Table 13 Summer crop production and area, Australia, 2015–16 to 2017–18

<table>
<thead>
<tr>
<th>Crop</th>
<th>Area 2015–16 '000 ha</th>
<th>Area 2016–17 s '000 ha</th>
<th>Area 2017–18 f '000 ha</th>
<th>Production 2015–16 kt</th>
<th>Production 2016–17 s kt</th>
<th>Production 2017–18 f kt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain sorghum</td>
<td>521</td>
<td>396</td>
<td>636</td>
<td>1,791</td>
<td>1,017</td>
<td>1,978</td>
</tr>
<tr>
<td>Cottonseed a</td>
<td>270</td>
<td>557</td>
<td>500</td>
<td>890</td>
<td>1,317</td>
<td>1,369</td>
</tr>
<tr>
<td>Cotton lint a</td>
<td>270</td>
<td>557</td>
<td>500</td>
<td>629</td>
<td>931</td>
<td>968</td>
</tr>
<tr>
<td>Rice</td>
<td>27</td>
<td>81</td>
<td>80</td>
<td>274</td>
<td>809</td>
<td>800</td>
</tr>
<tr>
<td>Corn (maize)</td>
<td>53</td>
<td>64</td>
<td>57</td>
<td>400</td>
<td>516</td>
<td>383</td>
</tr>
<tr>
<td>Soybeans</td>
<td>21</td>
<td>29</td>
<td>33</td>
<td>40</td>
<td>48</td>
<td>63</td>
</tr>
<tr>
<td>Sunflower</td>
<td>23</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>36</td>
<td>31</td>
</tr>
</tbody>
</table>

a Cotton area is estimated harvested area. f ABARES forecast. s ABARES estimate.

Note: Crop year refers to crops planted during the 12 months to 31 March. Slight discrepancies may appear between tables as a result of including the Northern Territory and the Australian Capital Territory in Australian totals.

Sources: ABARES; Australian Bureau of Statistics; Cotton Australia
Table 14 Production, major crops, Australian states, 2015–16 to 2017–18

<table>
<thead>
<tr>
<th>Winter crops</th>
<th>New South Wales</th>
<th>Victoria</th>
<th>Queensland</th>
<th>South Australia</th>
<th>Western Australia</th>
<th>Tasmania</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area '000 ha</td>
<td>Prod. kt</td>
<td>Area '000 ha</td>
<td>Prod. kt</td>
<td>Area '000 ha</td>
<td>Prod. kt</td>
</tr>
<tr>
<td>Wheat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017–18 f</td>
<td>3,300</td>
<td>4,785</td>
<td>1,550</td>
<td>3,550</td>
<td>610</td>
<td>735</td>
</tr>
<tr>
<td>2016–17 s</td>
<td>3,500</td>
<td>11,375</td>
<td>1,550</td>
<td>5,200</td>
<td>650</td>
<td>1,800</td>
</tr>
<tr>
<td>2015–16</td>
<td>2,933</td>
<td>6,898</td>
<td>1,342</td>
<td>1,815</td>
<td>611</td>
<td>1,316</td>
</tr>
<tr>
<td>Five-year average to 2016–17</td>
<td>3,271</td>
<td>7,777</td>
<td>1,502</td>
<td>3,293</td>
<td>704</td>
<td>1,351</td>
</tr>
<tr>
<td>Barley</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017–18 f</td>
<td>790</td>
<td>1,185</td>
<td>900</td>
<td>2,050</td>
<td>88</td>
<td>125</td>
</tr>
<tr>
<td>2016–17 s</td>
<td>870</td>
<td>2,697</td>
<td>940</td>
<td>3,200</td>
<td>95</td>
<td>300</td>
</tr>
<tr>
<td>2015–16</td>
<td>966</td>
<td>2,528</td>
<td>844</td>
<td>1,107</td>
<td>138</td>
<td>372</td>
</tr>
<tr>
<td>Five-year average to 2016–17</td>
<td>811</td>
<td>1,973</td>
<td>895</td>
<td>1,934</td>
<td>111</td>
<td>255</td>
</tr>
<tr>
<td>Canola</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017–18 f</td>
<td>620</td>
<td>403</td>
<td>420</td>
<td>660</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2016–17 s</td>
<td>510</td>
<td>842</td>
<td>355</td>
<td>700</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2015–16</td>
<td>568</td>
<td>937</td>
<td>277</td>
<td>287</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Five-year average to 2016–17</td>
<td>695</td>
<td>1,042</td>
<td>429</td>
<td>624</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Oats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017–18 f</td>
<td>280</td>
<td>252</td>
<td>120</td>
<td>250</td>
<td>24</td>
<td>9</td>
</tr>
<tr>
<td>2016–17 s</td>
<td>322</td>
<td>477</td>
<td>154</td>
<td>440</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>2015–16</td>
<td>278</td>
<td>383</td>
<td>140</td>
<td>185</td>
<td>36</td>
<td>23</td>
</tr>
<tr>
<td>Five-year average to 2016–17</td>
<td>293</td>
<td>354</td>
<td>130</td>
<td>250</td>
<td>41</td>
<td>16</td>
</tr>
</tbody>
</table>
Summer crops

<table>
<thead>
<tr>
<th></th>
<th>New South Wales</th>
<th>Victoria</th>
<th>Queensland</th>
<th>South Australia</th>
<th>Western Australia</th>
<th>Tasmania</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area '000 ha</td>
<td>Prod. kt</td>
<td>Area '000 ha</td>
<td>Prod. kt</td>
<td>Area '000 ha</td>
<td>Prod. kt</td>
</tr>
<tr>
<td>Grain sorghum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017–18 f</td>
<td>200</td>
<td>706</td>
<td>0</td>
<td>0</td>
<td>435</td>
<td>1,270</td>
</tr>
<tr>
<td>2016–17 s</td>
<td>135</td>
<td>365</td>
<td>0</td>
<td>0</td>
<td>260</td>
<td>650</td>
</tr>
<tr>
<td>2015–16</td>
<td>155</td>
<td>604</td>
<td>1</td>
<td>3</td>
<td>363</td>
<td>1,177</td>
</tr>
<tr>
<td>Five-year average to 2016–17</td>
<td>173</td>
<td>544</td>
<td>0</td>
<td>2</td>
<td>391</td>
<td>1,156</td>
</tr>
<tr>
<td>Cottonseed a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017–18 f</td>
<td>310</td>
<td>905</td>
<td>0</td>
<td>0</td>
<td>190</td>
<td>464</td>
</tr>
<tr>
<td>2016–17 s</td>
<td>370</td>
<td>868</td>
<td>0</td>
<td>0</td>
<td>187</td>
<td>448</td>
</tr>
<tr>
<td>2015–16</td>
<td>163</td>
<td>559</td>
<td>0</td>
<td>0</td>
<td>107</td>
<td>331</td>
</tr>
<tr>
<td>Five-year average to 2016–17</td>
<td>239</td>
<td>736</td>
<td>0</td>
<td>0</td>
<td>132</td>
<td>393</td>
</tr>
<tr>
<td>Rice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017–18 f</td>
<td>78</td>
<td>790</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>2016–17 s</td>
<td>80</td>
<td>800</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>2015–16</td>
<td>25</td>
<td>262</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Five-year average to 2016–17</td>
<td>72</td>
<td>744</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

*a Cotton area is estimated harvested area. f ABARES forecast. s ABARES estimate.

Note: Zero is used to denote nil or less than 500 tonnes or 500 hectares.

Sources: ABARES; Australian Bureau of Statistics
Table 15 Production, other crops, Australian states, 2015–16 to 2017–18

<table>
<thead>
<tr>
<th>Winter crops</th>
<th>New South Wales</th>
<th>Victoria</th>
<th>Queensland</th>
<th>South Australia</th>
<th>Western Australia</th>
<th>Tasmania</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area '000 ha</td>
<td>Prod. kt</td>
<td>Area '000 ha</td>
<td>Prod. kt</td>
<td>Area '000 ha</td>
<td>Prod. kt</td>
</tr>
<tr>
<td>Chickpeas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017–18 f</td>
<td>478</td>
<td>382</td>
<td>55</td>
<td>60</td>
<td>575</td>
<td>565</td>
</tr>
<tr>
<td>2016–17 s</td>
<td>480</td>
<td>792</td>
<td>16</td>
<td>28</td>
<td>550</td>
<td>1,150</td>
</tr>
<tr>
<td>2015–16</td>
<td>398</td>
<td>489</td>
<td>13</td>
<td>3</td>
<td>252</td>
<td>371</td>
</tr>
<tr>
<td>Five-year average to 2016–17</td>
<td>317</td>
<td>439</td>
<td>31</td>
<td>37</td>
<td>280</td>
<td>475</td>
</tr>
<tr>
<td>Field peas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017–18 f</td>
<td>52</td>
<td>52</td>
<td>60</td>
<td>75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2016–17 s</td>
<td>50</td>
<td>85</td>
<td>49</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2015–16</td>
<td>48</td>
<td>73</td>
<td>54</td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Five-year average to 2016–17</td>
<td>50</td>
<td>68</td>
<td>51</td>
<td>64</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lentils</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017–18 f</td>
<td>22</td>
<td>29</td>
<td>145</td>
<td>200</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2016–17 s</td>
<td>5</td>
<td>10</td>
<td>140</td>
<td>350</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2015–16</td>
<td>1</td>
<td>3</td>
<td>107</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Five-year average to 2016–17</td>
<td>2</td>
<td>3</td>
<td>98</td>
<td>132</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lupins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017–18 f</td>
<td>75</td>
<td>75</td>
<td>35</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2016–17 s</td>
<td>51</td>
<td>66</td>
<td>33</td>
<td>60</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2015–16</td>
<td>95</td>
<td>111</td>
<td>46</td>
<td>31</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Five-year average to 2016–17</td>
<td>63</td>
<td>73</td>
<td>34</td>
<td>35</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 16 Production, other crops, Australian states, 2015–16 to 2017–18 (continued)

<table>
<thead>
<tr>
<th>Summer crops</th>
<th>New South Wales</th>
<th>Victoria</th>
<th>Queensland</th>
<th>South Australia</th>
<th>Western Australia</th>
<th>Tasmania</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area '000 ha</td>
<td>Prod. kt</td>
<td>Area '000 ha</td>
<td>Prod. kt</td>
<td>Area '000 ha</td>
<td>Prod. kt</td>
</tr>
<tr>
<td>Corn (maize)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017–18 f</td>
<td>20</td>
<td>178</td>
<td>1</td>
<td>7</td>
<td>35</td>
<td>195</td>
</tr>
<tr>
<td>2016–17 s</td>
<td>21</td>
<td>189</td>
<td>5</td>
<td>55</td>
<td>37</td>
<td>266</td>
</tr>
<tr>
<td>2015–16</td>
<td>17</td>
<td>170</td>
<td>5</td>
<td>61</td>
<td>30</td>
<td>164</td>
</tr>
<tr>
<td>Five-year average to 2016–17</td>
<td>24</td>
<td>215</td>
<td>4</td>
<td>48</td>
<td>33</td>
<td>193</td>
</tr>
<tr>
<td>Soybeans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017–18 f</td>
<td>20</td>
<td>40</td>
<td>1</td>
<td>1</td>
<td>13</td>
<td>22</td>
</tr>
<tr>
<td>2016–17 s</td>
<td>16</td>
<td>29</td>
<td>1</td>
<td>1</td>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>2015–16</td>
<td>13</td>
<td>26</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Five-year average to 2016–17</td>
<td>20</td>
<td>31</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>Sunflower</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017–18 f</td>
<td>16</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>2016–17 s</td>
<td>15</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>2015–16</td>
<td>11</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Five-year average to 2016–17</td>
<td>13</td>
<td>18</td>
<td>1</td>
<td>0</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

f ABARES forecast. s ABARES estimate.
Note: Zero is used to denote nil or less than 500 tonnes or 500 hectares.
Sources: ABARES; Australian Bureau of Statistics; Pulse Australia
Table 16 Supply and disposal of wheat, canola and pulses, Australia, 2011–12 to 2016–17

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kt</td>
<td>kt</td>
<td>kt</td>
<td>kt</td>
<td>kt</td>
<td>s</td>
</tr>
<tr>
<td>Wheat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>29,905</td>
<td>22,855</td>
<td>25,303</td>
<td>23,743</td>
<td>22,275</td>
<td>35,009</td>
</tr>
<tr>
<td>Apparent domestic use</td>
<td>6,334</td>
<td>6,451</td>
<td>6,785</td>
<td>7,154</td>
<td>7,263</td>
<td>8,218</td>
</tr>
<tr>
<td>– seed</td>
<td>649</td>
<td>631</td>
<td>619</td>
<td>564</td>
<td>642</td>
<td>622</td>
</tr>
<tr>
<td>– other a</td>
<td>5,685</td>
<td>5,820</td>
<td>6,165</td>
<td>6,590</td>
<td>6,621</td>
<td>7,596</td>
</tr>
<tr>
<td>Exports b</td>
<td>24,656</td>
<td>18,644</td>
<td>18,612</td>
<td>16,587</td>
<td>16,116</td>
<td>22,640</td>
</tr>
<tr>
<td>Imports b</td>
<td>14</td>
<td>17</td>
<td>20</td>
<td>22</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Canola</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>3,427</td>
<td>4,142</td>
<td>3,832</td>
<td>3,540</td>
<td>2,775</td>
<td>4,136</td>
</tr>
<tr>
<td>Apparent domestic use a</td>
<td>871</td>
<td>631</td>
<td>969</td>
<td>915</td>
<td>1,088</td>
<td>972</td>
</tr>
<tr>
<td>Exports</td>
<td>2,557</td>
<td>3,512</td>
<td>2,863</td>
<td>2,626</td>
<td>1,857</td>
<td>3,517</td>
</tr>
<tr>
<td>Pulses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– lupins</td>
<td>982</td>
<td>459</td>
<td>626</td>
<td>549</td>
<td>652</td>
<td>1,031</td>
</tr>
<tr>
<td>– field peas</td>
<td>342</td>
<td>320</td>
<td>342</td>
<td>290</td>
<td>205</td>
<td>415</td>
</tr>
<tr>
<td>– chickpeas</td>
<td>673</td>
<td>813</td>
<td>629</td>
<td>555</td>
<td>875</td>
<td>2,004</td>
</tr>
<tr>
<td>Apparent domestic use a</td>
<td>416</td>
<td>290</td>
<td>286</td>
<td>306</td>
<td>398</td>
<td>540</td>
</tr>
<tr>
<td>– lupins</td>
<td>130</td>
<td>145</td>
<td>175</td>
<td>124</td>
<td>72</td>
<td>138</td>
</tr>
<tr>
<td>– field peas</td>
<td>93</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Exports</td>
<td>565</td>
<td>169</td>
<td>340</td>
<td>243</td>
<td>254</td>
<td>491</td>
</tr>
<tr>
<td>– lupins</td>
<td>215</td>
<td>177</td>
<td>169</td>
<td>168</td>
<td>134</td>
<td>279</td>
</tr>
<tr>
<td>– chickpeas</td>
<td>581</td>
<td>853</td>
<td>629</td>
<td>663</td>
<td>1,145</td>
<td>2,169</td>
</tr>
</tbody>
</table>

a Calculated as a residual: production plus imports less exports less any observed or assumed change in stocks and, for wheat only, less seed use. b Includes grain and grain equivalent of wheat flour.

Notes: Production, use, trade and stock data are on a marketing-year basis: October–September for wheat; November–October for canola and pulses. Export data on a marketing-year basis are not comparable with financial year export figures published elsewhere. Zero is used to denote nil or less than 500 tonnes. Due to an ABS change in scope for agricultural data collections, crop production is shown for establishments with an estimated value of agricultural operations (EVAO) of $5,000 or more until 2014–15, and an EVAO of $40,000 or more from 2015–16.

Sources: ABARES; Australian Bureau of Statistics; Pulse Australia
Table 17 Supply and disposal of coarse grains, Australia, 2011–12 to 2016–17

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kt</td>
<td>kt</td>
<td>kt</td>
<td>kt</td>
<td>kt</td>
<td>kt</td>
</tr>
<tr>
<td>Barley</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>8,221</td>
<td>7,472</td>
<td>9,174</td>
<td>8,646</td>
<td>8,992</td>
<td>13,414</td>
</tr>
<tr>
<td>Apparent domestic use</td>
<td>2,075</td>
<td>2,182</td>
<td>2,218</td>
<td>2,714</td>
<td>2,651</td>
<td>3,949</td>
</tr>
<tr>
<td>– seed</td>
<td>164</td>
<td>172</td>
<td>184</td>
<td>185</td>
<td>180</td>
<td>169</td>
</tr>
<tr>
<td>– other a</td>
<td>1,911</td>
<td>2,011</td>
<td>2,035</td>
<td>2,529</td>
<td>2,471</td>
<td>3,780</td>
</tr>
<tr>
<td>Export</td>
<td>6,146</td>
<td>5,289</td>
<td>6,957</td>
<td>5,932</td>
<td>6,342</td>
<td>9,465</td>
</tr>
<tr>
<td>– feed barley</td>
<td>3,758</td>
<td>2,972</td>
<td>3,944</td>
<td>3,070</td>
<td>4,351</td>
<td>6,092</td>
</tr>
<tr>
<td>– malting barley</td>
<td>1,619</td>
<td>1,512</td>
<td>2,273</td>
<td>2,149</td>
<td>1,394</td>
<td>2,700</td>
</tr>
<tr>
<td>– malt (grain equivalent)</td>
<td>770</td>
<td>805</td>
<td>740</td>
<td>713</td>
<td>596</td>
<td>674</td>
</tr>
<tr>
<td>Oats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>1,262</td>
<td>1,121</td>
<td>1,255</td>
<td>1,198</td>
<td>1,300</td>
<td>1,873</td>
</tr>
<tr>
<td>Apparent domestic use</td>
<td>1,049</td>
<td>884</td>
<td>1,001</td>
<td>960</td>
<td>1,026</td>
<td>1,508</td>
</tr>
<tr>
<td>– seed</td>
<td>35</td>
<td>34</td>
<td>41</td>
<td>40</td>
<td>43</td>
<td>36</td>
</tr>
<tr>
<td>– other a</td>
<td>1,014</td>
<td>850</td>
<td>960</td>
<td>920</td>
<td>983</td>
<td>1,472</td>
</tr>
<tr>
<td>Export</td>
<td>213</td>
<td>237</td>
<td>253</td>
<td>238</td>
<td>274</td>
<td>365</td>
</tr>
<tr>
<td>Triticale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>285</td>
<td>171</td>
<td>126</td>
<td>143</td>
<td>127</td>
<td>255</td>
</tr>
<tr>
<td>Apparent domestic use</td>
<td>285</td>
<td>171</td>
<td>126</td>
<td>143</td>
<td>127</td>
<td>255</td>
</tr>
<tr>
<td>– seed</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>– other a</td>
<td>280</td>
<td>167</td>
<td>122</td>
<td>137</td>
<td>123</td>
<td>252</td>
</tr>
<tr>
<td>Export</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Grain sorghum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>2,239</td>
<td>2,229</td>
<td>1,282</td>
<td>2,209</td>
<td>1,791</td>
<td>1,017</td>
</tr>
<tr>
<td>Apparent domestic use b</td>
<td>984</td>
<td>1,060</td>
<td>1,083</td>
<td>885</td>
<td>572</td>
<td>1,307</td>
</tr>
<tr>
<td>– seed</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>– other a</td>
<td>981</td>
<td>1,056</td>
<td>1,080</td>
<td>881</td>
<td>569</td>
<td>1,305</td>
</tr>
<tr>
<td>Export b</td>
<td>950</td>
<td>1,179</td>
<td>1,146</td>
<td>397</td>
<td>1,638</td>
<td>913</td>
</tr>
<tr>
<td>Corn (maize)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>451</td>
<td>506</td>
<td>390</td>
<td>495</td>
<td>400</td>
<td>516</td>
</tr>
<tr>
<td>Apparent domestic use b</td>
<td>312</td>
<td>347</td>
<td>401</td>
<td>331</td>
<td>432</td>
<td>343</td>
</tr>
<tr>
<td>– seed</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>– other a</td>
<td>311</td>
<td>346</td>
<td>400</td>
<td>330</td>
<td>431</td>
<td>342</td>
</tr>
<tr>
<td>Export b</td>
<td>46</td>
<td>106</td>
<td>106</td>
<td>60</td>
<td>64</td>
<td>63</td>
</tr>
</tbody>
</table>

a Calculated as a residual: production plus imports less exports less any observed or assumed change in stocks and less seed use.
b For summer crops, export and apparent domestic use volumes are shown in year of actual export and consumption, which is typically in the year following production. Export data are on a marketing-year basis and are not comparable with financial year export figures published elsewhere.

Note: Production, use and export data are on a marketing-year basis: November–October for barley, oats and triticale; March–February for grain sorghum and corn (maize). Zero is used to denote nil or less than 500 tonnes.
Sources: ABARES; Australian Bureau of Statistics; UN Commodity Trade Statistics Database (UN Comtrade)
Table 18 Grain, oilseed and pulse prices, first quarter 2016 to third quarter 2017

<table>
<thead>
<tr>
<th>Crop</th>
<th>2016 Q1 A$/t</th>
<th>2016 Q2 A$/t</th>
<th>2016 Q3 A$/t</th>
<th>2016 Q4 A$/t</th>
<th>2011 Q1 A$/t</th>
<th>2017 Q2 A$/t</th>
<th>2017 Q3 A$/t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic: feed, del. Sydney</td>
<td>271</td>
<td>264</td>
<td>240</td>
<td>238</td>
<td>209</td>
<td>226</td>
<td>260</td>
</tr>
<tr>
<td>International: US no. 2 hard red winter, fob Gulf</td>
<td>288</td>
<td>265</td>
<td>249</td>
<td>253</td>
<td>268</td>
<td>274</td>
<td>277</td>
</tr>
<tr>
<td>Barley</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic: 2 row feed, del. Sydney</td>
<td>237</td>
<td>227</td>
<td>191</td>
<td>183</td>
<td>183</td>
<td>210</td>
<td>243</td>
</tr>
<tr>
<td>Export: feed b</td>
<td>278</td>
<td>248</td>
<td>248</td>
<td>232</td>
<td>225</td>
<td>225</td>
<td>236</td>
</tr>
<tr>
<td>Export: malting b</td>
<td>318</td>
<td>292</td>
<td>275</td>
<td>267</td>
<td>243</td>
<td>261</td>
<td>244</td>
</tr>
<tr>
<td>International: feed, fob Rouen a</td>
<td>228</td>
<td>218</td>
<td>204</td>
<td>204</td>
<td>214</td>
<td>217</td>
<td>222</td>
</tr>
<tr>
<td>Grain sorghum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic: feed, del. Sydney</td>
<td>259</td>
<td>244</td>
<td>219</td>
<td>234</td>
<td>245</td>
<td>265</td>
<td>306</td>
</tr>
<tr>
<td>Export b</td>
<td>290</td>
<td>261</td>
<td>272</td>
<td>284</td>
<td>333</td>
<td>331</td>
<td>323</td>
</tr>
<tr>
<td>Oats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic: feed, del. Sydney</td>
<td>218</td>
<td>231</td>
<td>239</td>
<td>194</td>
<td>152</td>
<td>165</td>
<td>190</td>
</tr>
<tr>
<td>International: CME oats nearby contract</td>
<td>184</td>
<td>181</td>
<td>168</td>
<td>200</td>
<td>224</td>
<td>221</td>
<td>229</td>
</tr>
<tr>
<td>Corn (maize)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic: feed, del. Sydney</td>
<td>351</td>
<td>366</td>
<td>367</td>
<td>346</td>
<td>360</td>
<td>352</td>
<td>375</td>
</tr>
<tr>
<td>International: US no. 2 yellow corn, fob Gulf</td>
<td>222</td>
<td>231</td>
<td>204</td>
<td>204</td>
<td>213</td>
<td>211</td>
<td>193</td>
</tr>
<tr>
<td>Oilseeds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic: canola, del. Melbourne</td>
<td>536</td>
<td>537</td>
<td>508</td>
<td>548</td>
<td>539</td>
<td>529</td>
<td>523</td>
</tr>
<tr>
<td>International: Europe rapeseed, cif Hamburg</td>
<td>548</td>
<td>557</td>
<td>544</td>
<td>578</td>
<td>586</td>
<td>563</td>
<td>539</td>
</tr>
<tr>
<td>International: US no. 2 soybeans, fob Gulf</td>
<td>482</td>
<td>547</td>
<td>544</td>
<td>521</td>
<td>518</td>
<td>481</td>
<td>479</td>
</tr>
<tr>
<td>Pulses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic: lupins, del. Kwinana</td>
<td>298</td>
<td>270</td>
<td>278</td>
<td>272</td>
<td>234</td>
<td>267</td>
<td>296</td>
</tr>
<tr>
<td>Domestic: chickpeas, del. Melbourne</td>
<td>993</td>
<td>1,139</td>
<td>1,108</td>
<td>776</td>
<td>827</td>
<td>1,034</td>
<td>869</td>
</tr>
<tr>
<td>Domestic: field peas, del. Melbourne</td>
<td>555</td>
<td>602</td>
<td>413</td>
<td>355</td>
<td>343</td>
<td>362</td>
<td>318</td>
</tr>
<tr>
<td>Export: chickpeas b</td>
<td>904</td>
<td>1,055</td>
<td>1,272</td>
<td>968</td>
<td>942</td>
<td>1,023</td>
<td>1,013</td>
</tr>
<tr>
<td>Export: field peas b</td>
<td>590</td>
<td>646</td>
<td>634</td>
<td>506</td>
<td>444</td>
<td>458</td>
<td>417</td>
</tr>
</tbody>
</table>

a Average of daily offer prices made in US dollars and converted to Australian dollars using quarterly average of daily exchange rates. *b* Export unit values reflect the average price received for grain exported over the quarter, not current market prices. These prices are the average unit value (free on board) of Australian exports recorded by the Australian Bureau of Statistics. A long lag time can exist between when exporters negotiate prices and when the product is exported. Notes: Q1 refers to January–March; Q2 refers to April–June; Q3 refers to July–September; Q4 refers to October–December. Prices used in these calculations exclude GST.

Sources: ABARES; Australian Bureau of Statistics; CME Group; Farm Weekly; International Grains Council; The Land; The Weekly Times; US Department of Agriculture