Raising productivity growth in Australian agriculture

Katarina Nossal and Peter Gooday

November 2009

abare.gov.au
© Commonwealth of Australia 2009

This work is copyright. The Copyright Act 1968 permits fair dealing for study, research, news reporting, criticism or review. Selected passages, tables or diagrams may be reproduced for such purposes provided acknowledgment of the source is included. Major extracts or the entire document may not be reproduced by any process without the written permission of the Executive Director, ABARE.

Australian Bureau of Agricultural and Resource Economics
Postal address GPO Box 1563 Canberra ACT 2601 Australia
Location 7B London Circuit Canberra ACT 2601
Switchboard +61 2 6272 2000
Facsimile +61 2 6272 2001

ABARE is a professionally independent government economic research agency.

ABARE project 3425

Acknowledgements

The authors would like to acknowledge comments provided on a draft of this report by ABARE colleagues Shiji Zhao and Yu Sheng. The assistance of Vicky Fisher and the Agricultural Productivity Division of the Department of Agriculture, Fisheries and Forestry is also duly acknowledged.
Foreword

There is growing pressure on industry and governments to lift productivity growth in agriculture and the economy given the enduring challenges of land and water scarcity, and climate change. To lift productivity growth, a better understanding of its determinants and their relative contribution is necessary as this will assist in devising effective policies and R&D investment strategies.

ABARE was invited by the House of Representatives Standing Committee on Economics to make a submission to the inquiry into ‘Raising the level of productivity growth in the Australian economy’ commissioned in August 2009. ABARE’s submission highlighted the role of agricultural productivity growth in the national economy and identified the main opportunities for governments to influence future productivity growth.

This report is an abridged version of the submission, which focuses discussion toward the agriculture sector. It draws on previous ABARE research to identify drivers and threats to agricultural productivity growth and also highlights the key opportunities for industry and governments.

Phillip Glyde
Executive Director
November 2009
Raising productivity growth in Australian agriculture

Summary

Productivity growth reflects changes in the efficiency of converting inputs into outputs and is largely a result of technological progress. It is fundamental to maintaining and improving living standards.

Estimates of productivity growth are not perfect in measuring technological progress because of imperfect data, methodological limitations and other constraints. However, the methods used by ABARE are broadly consistent with those used internationally and by the Australian Bureau of Statistics (ABS) and provide a consistent framework for analysing productivity performance.

Increased production in Australian agriculture has been almost entirely a result of productivity improvements. Productivity growth has averaged 2.8 per cent a year over the past two decades, compared with 1.4 per cent a year for the market sector overall (ABS 2008). Recent analysis suggests that agricultural productivity growth may be slowing, with flow-on effects throughout the economy. Although drought has had a strong effect on agricultural productivity in recent years, a number of other factors have also been identified as contributing.

Given the emerging and significant challenges of land and water availability, population ageing and long-term climate change, it is likely Australia will need to lift agricultural productivity growth above its current long-term average to continue to play its role as a competitive supplier of food and fibre. Higher productivity growth will be required to maintain international competitiveness and farm viability under changing market and environmental conditions.

There are a number of areas where significant productivity gains can be made. There is a role for government to assist in these areas through investments in public goods and services and setting policies that enable and encourage productivity growth. These areas are:

• R&D investment – There is a well-established link between R&D expenditure and productivity growth. To improve long-term productivity growth it is important for government and industry to support R&D to accelerate development of new knowledge and technology.

• Innovation adoption – Facilitating innovation through improving the incentives and capability of industry to develop and adopt new knowledge and technology can accelerate productivity growth. This could be achieved through improvements in access to research results, training and education, communication services and public infrastructure.
• Removing policy impediments – Some current regulations provide a disincentive for producers to be innovative and change practices in response to market developments. Policy settings that enable flexibility in decision-making among farms provide opportunities for innovation. Reforms encouraging competition and reducing regulatory constraints will provide a stronger basis to enable productivity gains.

• Improved market access – International competition can stimulate innovation and its adoption through the economy as industries endeavour to remain viable and improve their competitiveness. Greater market access therefore provides a strong incentive to lift productivity.

• Addressing environmental pressures – Climate change, resource depletion and other environmental pressures pose a major threat to productivity growth. Accelerating the development of low environmental-impact and mitigation technologies, and implementing policy settings to allow environmental objectives to be met at least cost, will create opportunities for simultaneously lifting productivity growth and reducing environmental pressures.

Introduction

Australian agriculture faces a number of emerging and long-standing challenges that include drought and climate change, land and water availability, market access and biosecurity concerns, population ageing and labour shortages, and maintaining international competitiveness.

In recent decades, agricultural industries have expanded production without significantly increasing the overall use of land and other resources. That is, farms have continued to improve efficiency in converting inputs into outputs. Indications are that agricultural productivity growth may now be slowing which suggests these improvements have not been as significant in recent years.

The number of challenges facing the sector emphasise that lifting productivity growth above the long-term average is now desirable. This requires efforts from both industry and government in accelerating research and development and improving policy settings to increase efficiency. For these strategies to be effective, a better understanding of productivity growth, the factors driving it and the relative contribution of these determinants is required.

Productivity growth in Australian agriculture has been an integral component of ABARE’s research program for many years. Recently, ABARE has examined a number of factors determining productivity growth in Australian agriculture.

This report highlights the importance of productivity growth and examines its key drivers in agriculture. The role of industry and governments in influencing these drivers is then highlighted, including the usefulness of improvements in R&D, innovation uptake, policy settings, market access and the environment. Further research into these determinants is required to identify their relative contribution to productivity performance and to enable funding and policies to be efficiently targeted toward lifting productivity growth.
Why is productivity growth important?

Productivity growth is a key determinant of economic performance, international competitiveness, economic welfare and living standards. Productivity measurements reflect the ability of producers to convert inputs into outputs, with an increase in productivity growth indicating that inputs are being used more efficiently over time. Fewer inputs are required to produce the same output, or alternatively, additional output is possible from a given input use.

Productivity improvement is the dominant means by which living standards improve over the long term. Increased output (or decreased input use) leads to lower production costs and higher incomes. Consequently, productivity growth can mean higher returns on capital, higher wages, higher profits and increased tax revenue. It can also lead to lower prices for consumers and may benefit the environment as less land, water and chemicals are required to produce the same amount of output (PC 2005). As Krugman (1992) explained; ‘productivity isn’t everything, but in the long run it is almost everything’.

Productivity growth is valuable for maintaining and improving international competitiveness. Productivity gains have been a means of offsetting declining real prices received for farm commodities on global markets. Farms have also faced rising input costs, resulting in an overall terms of trade decline of 1 per cent a year between 1990-91 and 2007-08. Declining terms of trade can severely affect the incomes of exporters, so finding ways to reduce costs by lifting productivity has been fundamental for the agriculture sector in remaining internationally competitive and increasing farm incomes.

Productivity growth in agriculture can also mitigate the adverse effect of other long-term challenges – population ageing, sustainable water use and climate change (Productivity Commission 2008). Productivity growth will also help in tackling issues related to global food security, water and resource availability and drought (Nossal, Zhao, Sheng and Gunasekera 2009). The renewed emphasis on lifting productivity growth by industry and Australian Governments is an appropriate and necessary step toward a sustainable and competitive rural sector.

Increased agricultural productivity is vital to address the needs of a rapidly expanding global population. The United Nations Food and Agriculture Organisation estimates food requirements will double by 2050 (FAO 2009), raising concerns about global food security. The increasing demand for food is driven by global population growth and higher living standards in developing economies calling for higher quality, and greater variety, of food for human consumption and increased feed for livestock.

Productivity measurement

While there is a general consensus about the notion of productivity, disagreements are common about the preferred form of estimates, suitable measurement techniques for inputs and outputs, and appropriate interpretations of productivity estimates. These challenges have created some misunderstanding about the concept of productivity itself.
Productivity measures the efficiency with which inputs are converted into outputs by calculating the ratio of output quantities to input quantities during a specific time period (as much as possible the effect of relative price changes is removed). Productivity growth compares the changes in this ratio over time, which effectively measures the change in output that can not be accounted for by a change in input use. It is most commonly assumed that this gap reflects technological progress.

Specifically, technological progress is the changes in production technology or production processes as a result of new information or changed operating conditions. However, it is important to recognise that many other factors, including choice of method and measurement errors, can also affect productivity measurement.

Productivity estimates generally require that quantities of inputs (and outputs) be aggregated to form an index. In this process, inputs costs and output values are used as weights to enable the aggregation of heterogeneous inputs and outputs. This is so that productivity changes reflect changes in real outputs and real inputs used in production, rather than changes in relative prices. The ratio of the output index to the input index forms the productivity index.

There are two main measures of productivity growth. Partial productivity measures estimate output relative to a single input such as land or labour (e.g. tonnes of output per hectare or per worker). Alternatively, total factor productivity measures (TFP) compare total output with total inputs used in production. For ABARE’s TFP estimates for agricultural industries, these inputs include land, labour, capital, materials and services. TFP is also sometimes called multifactor productivity (MFP).

Because it takes into account many inputs to production, TFP (or MFP) provides a more comprehensive measure of productivity performance than partial productivity measures and is generally more useful for investigating the overall improvement in an industry or economy.

It is necessary to interpret productivity estimates with caution, particularly when making comparisons between estimates from different sources or industries where there are likely to be differences in data collection, scope and methodology (see box 1 for an explanation of the differences between ABS and ABARE productivity estimates).

Some of the key challenges for Australian productivity measurement are addressing input quality, short-term volatility and the suitable inclusion of services industries.

Input quality
As a quantity index is used to measure inputs, it is often difficult to appropriately reflect differences in input quality. For example, in practice, labour input is measured by the number of workers (i.e. head counts) or hours worked. But these two measures are imperfect because the labour force is not homogeneous. More educated labour is expected to raise productivity relative to less educated labour, however, such differences in labour quality are difficult to capture when aggregating workers or hours worked. Some productivity estimates attempt to adjust for input quality. However, given the available data, it is often difficult to do so.
Short-term volatility

Productivity growth trends are highly sensitive to changes in the choice of the start and end years used in the estimation. Short-term factors (such as seasonal conditions) can lead to large changes in input or output which affect long-term averages. Because of the way productivity estimates are calculated (using index numbers), it is also not possible to test for statistical significance. This problem makes it necessary to examine productivity growth trends over relatively long periods.

Services and other industries

At this stage, the Australian Bureau of Statistics (ABS) can only estimate productivity growth for the ‘market sector’, where reliable output, input and price data are available. These industries include: agriculture, forestry and fishing; mining; manufacturing; electricity, gas and water; construction; wholesale trade; retail trade; accommodation, cafes and restaurants; transport and storage; communication services; finance and insurance; and cultural and recreation services. For non-market industries it is difficult to separate changes in price from changes in output quality and quantity. Industries excluded from the market sector are: health and community services; education; property and business services; government administration and defence; and personal and other services.
Given current data availability, it is also difficult to estimate productivity growth for alternative industry definitions such as the ‘food industry’, which would require food outputs to be aggregated from several ABS market sector industries including agriculture, manufacturing and cafes and restaurants.

Productivity growth in Australian agriculture

Productivity growth in the economy

There has been an upward trend in productivity in Australia over the past two decades. Market sector productivity growth averaged 1.4 per cent a year between 1985-86 and 2007-08.

Productivity growth during the 1990s was particularly strong, a phenomena attributable in large part to extensive microeconomic reform during this period (Parham 2004). Unfortunately, the 2000s have seen productivity growth stall and even reverse in Australia with the ABS estimating negative productivity growth in 2007-08 (ABS 2008). Productivity growth has softened in most industries, with agriculture, mining and manufacturing contributing most to the overall productivity slowdown.

Other OECD countries have also experienced stagnation in productivity growth. While Australia has kept pace with most of these economies, it has fallen behind that of the United States (Productivity Commission 2008).

Short-term movements are not typically a strong indicator of underlying productivity trends, as growth can be highly volatile. Nevertheless, the slowdown in productivity growth this decade suggests a revived focus on lifting productivity growth is necessary.

The role of agricultural productivity growth

The agriculture sector’s share of national gross domestic product (GDP) is low at around 2.5 per cent. However, agriculture is a strong contributor to national productivity growth. Between 1974-75 and 2007-08, agricultural productivity growth accounted for 17.5 per cent of market sector productivity growth.

Agricultural productivity growth has typically exceeded the market sector average. Over the past two decades, annual productivity growth in the agriculture sector averaged 2.8 per cent a year, which was double the market sector average of 1.4 per cent (figure a).

The 1990s saw particularly strong growth in agricultural productivity, largely because of microeconomic reform, favourable weather conditions and rapid advances in machinery, equipment and new crop varieties. The agriculture sector was a significant contributor to Australia’s productivity growth during this period and, similarly, recent slowing agricultural productivity growth has been a key contributor to the slowdown in economy-wide productivity growth.
Raising productivity growth in Australian agriculture

Australian agriculture is heavily influenced by seasonal conditions that can cause high volatility in productivity estimates. As seen in figure a, productivity dropped notably in the drought years of 1994-95 and 2002-03. ABARE broadacre farm data also show dramatic productivity falls in 2006-07, which was another major drought year (figure b). These falls in productivity have decreased the long-term productivity growth estimates for the sector and the economy more broadly.

While drought has played a role in the productivity slowdown in Australia, other factors such as broader environmental and resource quality issues, population ageing and labour and skill shortages may have affected performance in the agriculture industry. Declining research investment – a trend observed in many developed economies (Pardey, Alston and Beintema 2006) – is one key factor that may have contributed.

The contribution of these and other factors to the perceived productivity slowdown is unclear and has become a major focus of ABARE’s current research. Current knowledge of the possible drivers and threats to productivity growth are discussed in the following sections. Many of these factors have relevance across many industries and the economy more broadly. A better understanding of these factors will assist in developing strategies to lift productivity growth.

Agriculture’s productivity performance

Aggregate productivity growth estimates for the Australian broadacre and dairy industries have been published by ABARE since the mid-1990s. These estimates have been published at the national level and occasionally at a regional level. Productivity estimates are also calculated for individual broadacre industries, namely cropping, mixed crop-livestock, beef and sheep. ABARE’s productivity and other statistical reports are widely used by government agencies, industry bodies and the research community as input to policy and to analyse economic issues affecting the sector (Mullen and Crean 2007).

Productivity growth has been the main source of income growth in the agriculture sector, and has accounted for the entire increase in output by the sector over the past 30 years. In broadacre agriculture, total input is estimated to have declined by 0.6 per cent a year, while total output increased by 0.8 per cent a year on average (Nossal et al. 2009). This enabled productivity growth of 1.5 per cent a year on average, despite high volatility (figure b).
Fluctuations in agricultural productivity largely reflect seasonal conditions. While input use has decreased fairly steadily, there have been sharp movements in output such as during the drought years of 1980-81, 1982-83, 1994-95, 2002-03 and 2006-07 (Nossal et al. 2009). As many agricultural inputs are relatively fixed in the short term, productivity is hampered by these downturns in output. Nevertheless, long-term productivity growth has remained positive overall.

Growth in productivity can arise in three ways: an increase in output greater than the relative increase in input use; a decrease in outputs by less than the relative decrease in inputs; or an increase in outputs associated with a decrease in inputs (or no change in inputs). For the broadacre industries assessed by ABARE, each achieved productivity growth via different means (table 1).

Between 1977-78 and 2006-07, Australia’s broadacre cropping industry achieved productivity gains by increasing outputs more than the increase in input use. Mixed crop-livestock farms kept output fairly constant while reducing input use. Beef farms increased output while maintaining input use. In contrast, the sheep industry improved productivity by cutting back input use by a greater amount than the reduction in output.

Examining the input and output movements that have determined productivity performance at the industry level provides a starting point for developing strategies for lifting productivity growth. For example, one factor driving sheep industry productivity growth appears to have been farmers leaving the industry during the 1990s. As prices for wool were relatively low at this time, some farms responded by shifting substantial resources into crop production and
output from the sheep industry fell. However, as input use decreased by a greater amount (and productivity improved), it appears that farms remaining in sheep production became more efficient. Structural adjustment in response to changing relative returns from different enterprises was hence conducive to productivity growth in the industry.

What causes productivity growth?

Fundamentally, productivity growth occurs as new technology and knowledge allows production processes to become more efficient in converting inputs into outputs. There are three main ways in which greater efficiency may be achieved – using fewer inputs overall, using a different combination of inputs, or producing a different mix of outputs (box 2). Strategies behind these adjustments that lead to an increase in average industry productivity are:

- adopting new technologies and knowledge
- increasing adoption rates of currently available technologies and knowledge
- exit of less productive farms.

The scope for lifting productivity by targeting each of these strategies will vary across industries depending on the extent to which input and output mixes can be adapted, and the nature of the incentives currently facing farms. Both farm-specific and external factors can influence the ability of farms to develop and/or adopt new technology and processes to increase productivity.

Farm-specific characteristics affecting productivity

Farms have an inherent capability to convert inputs into outputs using available technology and knowledge. This ability is based on farm characteristics such as business organisation, managerial abilities, access to capital, production scale and scope, and risk management. Productivity growth often occurs as a result of changes in these characteristics which might result from changes in preferences, incentives, new information or technology availability or other external factors.

Managerial abilities

Managerial skills can play a key role in productivity growth, particularly decisions regarding organisational structure, resource allocation, production scale and scope, marketing and other work arrangements. Of particular relevance is a manager’s ability to optimise these arrangements to take advantage of changes in the external environment or the availability of new technologies or information.

Human capital

Securing an optimal supply of suitably skilled labour is vital for farms to improve productivity growth. However, productivity can be impeded by constraints that limit labour moving
Raising productivity growth in Australian agriculture

between industries in response to price changes or restrictions to attracting skilled labour from overseas.

Beyond labour availability, other aspects of human capital, such as education and training, physical and mental health and age, are also valuable to lifting productivity. Improving the skills of the workforce is essential to enhancing innovation, strengthening competitiveness and boosting resilience.

In agriculture, developments in human capital have been inhibited by a number of factors including: competition for labour from other industries, an ageing population and declining rural populations, low participation in agricultural education and training (including low student numbers in tertiary agriculture courses), poor awareness of agricultural career pathways and a limited capacity of the current education and training system to deliver innovative training solutions (Industries Development Committee Workforce Training and Skills Working Group 2009).

To improve the productivity of human capital, investment in education and training needs to be supplemented with improvements in the accessibility of new information, knowledge and
technology. Lifting the ability of farms to interpret and adapt technological developments to suit individual conditions will also help to improve productivity.

Size and scope of production

Large farms often exhibit higher productivity growth relative to small farms. Economies of size, whereby costs of production decline as the size of operations increase, is one reason large farms often perform better. Economies of size is often highlighted as a means of improving productivity growth.

Another suggestion is that larger farms are better able to capture the benefits of new technologies which are often more suited to larger production systems. Yet to be completed work in ABARE appears to be indicating that, for broadacre agriculture, the productivity advantages associated with increased size are more closely related to adoption of more advanced technologies, rather than economies of scale.

Financial capability

Many of the ways to achieve productivity growth, such as purchasing more efficient equipment or accessing information about new processes or practices and responding to changing external conditions, are costly. ABARE's farm survey results indicate that farms which are more profitable are generally more innovative (in adopting new technologies or processes), potentially indicating a greater ability to invest in production capabilities.

Financial capability is also influenced by access to credit and other sources of income. Farms with access to many dimensions of finance are likely to be more resilient to external changes and shocks, and consequently better able to remain viable during difficult times. They may also be better placed to improve productivity over time (Kokic, Davidson and Rodriguez 2006).

External drivers

External factors are those not under the control of the farm. For example, drought directly leads to lower productivity growth in agriculture industries by causing a fall in output. The main external drivers affecting productivity growth in agriculture are outlined below.

R&D and innovation

Productivity improvements are often a result of new knowledge or technologies becoming available. R&D expenditure in developing new and better production methods and improved goods and services is central to achieving productivity growth.

Over the long run, agricultural TFP has been driven by the development and diffusion of innovations in capital and materials, breeds and crop varieties, production practices and farm organisation. During the 1980s and 1990s, many significant technological advances were made in the agriculture sector as a result of R&D. Lower R&D expenditure in recent decades may mean fewer innovations have been introduced, giving fewer opportunities for producers.
Fewer major innovations across many primary industries could also reflect a shortage of research scientists across a range of fields, lack of effective extension programs (to communicate research to users) and limitations to innovation because of natural resource management, business, financial and marketing constraints (Industries Development Committee Workforce Training and Skills Working Group 2009).

The effect of R&D expenditure can be difficult to measure and monitor because of the long lags between investment in research and productivity gains. In agriculture, these lags can be up to 35 years (Mullen and Crean 2007). Nevertheless, research in Australia and globally has invariably indicated returns to investment in agricultural R&D of between 15 and 40 per cent (Alston, Chan-Kang, Marra, Pardey and Wyatt 2000; Mullen and Cox 1995; Shanks and Zheng 2006).

Market conditions

Market conditions can provide a strong incentive for improving productivity. For example, international competition provides incentives to lift productivity in order to remain viable and can hence drive innovation and its diffusion across the economy. As productivity increases, real output prices fall thereby improving competitiveness (given all other factors being equal) (Mullen and Crean 2007).

Growth in overseas demand for Australian products has also been an external factor responsible for productivity gains, particularly in agriculture. Demand for exports, such as the growth in live cattle export from northern Australia to Asia in recent years, provides a strong incentive for farms to innovate and expand output. The northern beef industry achieved average productivity growth of 1.14 per cent a year over the past decade compared with negligible productivity growth in the two decades prior (Nossal, Sheng and Zhao 2008).

Similarly, productivity growth responds to changing commodity prices. As relative prices change, farms are motivated to improve performance through actions such as changes in output mix. For example, relatively strong growth in lamb prices and associated returns from lamb production has resulted in more investment in this activity in recent years.

Population growth, income growth and changing consumer demand will have further implications for long-term productivity, as the goods and services demanded are likely to change. In agriculture, food demand will rise as well as the types of food demanded. For example, higher income is associated with higher demand for meat products as well as increased demand for environmentally friendly or organic products. These changing patterns in demand will also shift the incentives for producers to lift productivity growth.

Environmental conditions and climate change

The productivity capacity of a farm is heavily influenced by inherent resource endowments. In agriculture, land quality, soil fertility, water quality and availability, climate variability and climate change affect the capability of a farm to achieve productivity gains. Changes in these factors can also reduce the effectiveness of past strategies for making future productivity
gains (Kokic et al. 2006). Changing conditions affect the types of innovations and management practices most suited to achieving productivity growth.

Since 2001-02, many agricultural regions of Australia have experienced higher than average temperatures and lower than average rainfall (BOM 2008). The shift in climatic conditions has contributed to sharp falls in production and productivity growth in many agricultural industries, with flow-on effects for the economy. Climate change could see these effects become more frequent or prolonged. Moisture availability is the most dominant determinant of broadacre farm productivity growth (Kokic et al. 2006).

Climate change poses a large threat to productivity growth, and is projected to cause declines in crop yields, pasture growth and livestock production. Agricultural production costs are also expected to increase (Gunasekera, Tulloh, Ford and Heyhoe 2008).

While environmental factors are largely outside the farm manager’s control, flexibility and adaptability to changing conditions are likely to become increasingly important for productivity growth.

Regulatory and other policy settings

The productivity gains achieved by Australian agriculture and the broader economy during the 1980s and 1990s have been associated with the significant microeconomic reforms during this period (Parham 2004), particularly in opening the economy to competition, trade and investment and the deregulation of many industries and institutions. Deregulation brought greater competition, labour market flexibility and financial market stability (Productivity Commission 2008). These reforms benefited productivity growth by improving the incentives for innovation and by improving flexibility and options for decision-makers to improve performance.

To enable productivity growth, regulatory systems should allow flexibility for farms in selecting optimal production processes in response to new knowledge or market developments. This may require further policy reform to remove constraints, improve market access, encourage competitiveness and enable industries to respond to emerging environmental and demographic changes. Differing regulations between the states in areas such as transport, animal and plant health and welfare, and occupational health and safety may affect productivity growth.

Public infrastructure

Adequate and appropriate provision of infrastructure is imperative to long-term productivity growth. Australia’s productivity performance has been in part because of the efficiency gains in information and communication technologies and transport. However, there are still improvements to be made in these industries, particularly in rural areas (ABS 2006; Australia 2020 Summit 2008; House of Representatives Standing Committee on Transport and Regional Services 2007).

Investment in infrastructure provides support for many other sectors. For instance, Australia’s grain rail networks were identified during 2005 as an issue for agriculture’s export performance.
Raising productivity growth in Australian agriculture. The capacity for Australia’s cropping industry to lift productivity would be increased if grain rail networks were improved to remove transport bottlenecks. It is expected improved infrastructure would lower input costs for the grains and other industries, reduce their reliance on sometimes inadequate on-farm storage mechanisms and improve access to export opportunities.

Limited internet access in some rural areas may also be a constraint to productivity growth. Many industries, including agriculture, are increasingly reliant on telecommunications and web-based tools and services for assessing input and output choices, accessing market information, adopting innovations and improving managerial skills and knowledge. Ensuring adequate provision of telecommunications infrastructure could yield large improvements in performance across many sectors.

Opportunities to lift productivity growth

There is potential to lift productivity growth in Australian agriculture. For government, this will mean removing constraints to change and implementing integrated policy solutions that provide appropriate incentives for innovation. For industry, lifting productivity requires development of farm-specific capabilities, increased development and adoption of innovative practices and technologies and improved responsiveness to changing external conditions.

Specific opportunities for productivity growth where there is a role for government include: encouraging effective R&D investment, facilitating innovation uptake, removing policy constraints to growth, and facilitating effective responses to climate change and other environmental pressures.

R&D investments

Despite high returns, there has been a stalling of public R&D expenditure in Australia over the past 30 years (as a share of GDP). Public investment in agriculture R&D has fallen from 5 per cent of agricultural GDP a year between 1978 and 1986 to slightly more than 3 per cent in 2003. Although private sector funding has increased, this has not been sufficient to offset the decline in public sector investment (Mullen and Crean 2007).

R&D expenditure is the main source of innovation in the economy. It is possible that the flattening of agricultural productivity is because the sector is approaching its limits in terms of the gains possible from current technologies. Technologies developed during the 1980s and 1990s led to capital-labour substitution and strong economy-wide productivity growth. Declining R&D expenditure has potentially slowed development in this area.

Public R&D expenditure needs to be well-coordinated and well-directed for productivity gains to be improved. In agriculture, one strategy for improving R&D effectiveness has been the recent establishment of the Rural Research and Development Council. The council is developing a National Strategic Rural R&D Investment Plan and a national performance measurement and reporting framework. The National Primary Industries Research, Development and Extension Framework is also being used by state and Australian governments and industry groups to improve national research capabilities and cross sectoral R&D.
Renewed emphasis on national R&D, including the effective allocation of resources, will be imperative to lifting productivity in agriculture and the economy over the long term.

Innovation adoption

Many innovations currently available are not adopted to their full extent, meaning that potential productivity gains are foregone. To supplement R&D, particularly in the shorter term, facilitating innovation uptake by farms may be valuable.

Factors that may stimulate innovation adoption include continued government efforts toward improving labour skills, education, health, communication services and public infrastructure. These factors improve the ability of producers to take advantage of developments in technology and knowledge.

Improving access to information and fuller extension of R&D outcomes is also imperative. There often remains a communication gap between research scientists and producers and reducing this gap by better coordinating extension programs could have major benefits.

Incentives to innovate are likely to also come from external pressure, such as population ageing, climate change and evolving domestic and overseas market requirements.

Removing policy impediments

Policy settings can act as incentives or constraints to productivity growth. Some current policies are likely to be inhibiting productivity growth by constraining flexibility in production decision-making. Flexibility is conducive to lifting productivity growth as it enables farms to better respond to external drivers coming from international competition, changed market access, consumer attitudes and variations in seasonal or other environmental factors.

Changing these policy settings could enable policy objectives to be met while providing a more flexible environment for farms and industry to take advantage of productivity gains. Part of this process requires improved dialogue between policy-makers, regulators, industry and the community to ensure that regulation is effective in meeting its objectives over time, gives the community confidence and does not impose unnecessary costs or stifle desirable innovation.

Several current regulatory settings are likely to be acting as a constraint to productivity growth in agriculture. For example, native vegetation regulations in some states are costly and may inhibit productivity. Policy responses that allow more flexibility have the potential to provide a given level of ecosystem services at substantially lower cost (Davidson, Lawson, Kokic, Elliston, Nossal, Beare and Fisher 2006; Productivity Commission 2004).

Current drought policy also provides a disincentive to adjustment and productivity improvements. In particular, current policy has limited the incentives for farms to adapt farming practices in response to drier conditions (Productivity Commission 2009). These policy settings are currently under review. Reforms in this area could assist in stimulating productivity by encouraging adjustment and innovation, particularly in the area of risk management, drought preparedness and climate change management.
Improving efficiency in water allocation mechanisms will also continue to be important, particularly as water scarcity increases. Well-defined and tradable property rights will improve the ability of users to invest in new technologies and efficient water management techniques and adjust enterprise mixes to reflect water availability and prices.

Improving market access

Securing access to new and existing markets also provides incentives for productivity growth to meet increased export demand and improve competitiveness. Many global markets remain protected by trade barriers and subsidised production. Multilateral trade negotiations provide the greatest potential for large gains for Australia in global trade; however, the complexity of issues and number of countries involved has slowed progress. Nevertheless, bilateral agreements for freer trade, or the development of biosecurity and other protocols with individual countries to facilitate trade in specific farm commodities, can still generate significant benefits for agricultural exports.

Addressing environmental pressures

Climate change poses a major threat to agricultural productivity growth if farms are unable to efficiently adapt to, and mitigate, the effects of climate change on production processes. A similar situation exists in cases where farms face resource depletion, declining land quality, reduced water availability and other environmental pressures. Productivity growth will depend on the ability of farms to innovate in response to these new and growing environmental pressures.

Government responses to climate change (and other environmental pressures) will also have implications for productivity growth. Many sectors of the economy will face higher input costs as a result of the introduction of a Carbon Pollution Reduction Scheme (CPRS), which is scheduled to commence in 2011. In particular, prices will increase for electricity, fuel, freight and other emissions intensive inputs. As a result, the CPRS is likely to lead to technological changes and changes in input and output mixes as relative prices change (Tulloh, Ahammad, Mi and Ford 2009). This will offer an incentive to innovate and develop lower cost inputs of lower emissions intensity, provided that this incentive is not distorted by policy settings in other areas.
Conclusions

Agricultural productivity growth appears to have slowed in recent years. A clear understanding of the drivers and threats to productivity growth is necessary for deriving strategies to reverse this trend.

Drivers of productivity growth include farm-specific and external factors. External factors are difficult for individual farms to influence. However, these provide the broad incentives for innovative change and productivity growth. International competition, consumer demand, export opportunities and environmental pressures provide major incentives for industry to improve productivity. Governments may have some influence over external factors, particularly through policy settings and investment in public goods and services. Government involvement can also be helpful in building the ability and willingness of farms to lift productivity through providing appropriate incentives to innovate and to adapt as circumstances change.

In this paper, five areas have been identified that could enable significant improvements in productivity growth for Australian agriculture. While these areas may present notable challenges, they also offer significant opportunity for policy development toward lifting productivity growth.

First, there is an important role for governments and industry in supporting R&D and building capacity for technological progress. Increased emphasis on effectively targeted R&D will accelerate the development of new knowledge and technologies which are the fundamental building blocks for productivity growth.

Second, building innovative capabilities among farms (in adopting existing knowledge and technology as well as developing new technology) relies on developing characteristics such as managerial abilities, human capital and financial capacity. Government involvement in extension programs, education and infrastructure provision will continue to be an important driver of innovative capabilities.

Third, removing impediments to adjustment can stimulate productivity growth. Some regulations currently in place across the economy may limit the ability of producers to make changes and respond to market developments. Policy setting that enables flexibility in decision-making among farms provides a broader set of opportunities for innovation. Continuing policy reforms that encourage competition and reduce regulatory constraints will provide a stronger basis for productivity gains.

Fourth, improving market access could potentially deliver strong productivity gains. International competition provides an incentive for farm industries to improve productivity to remain viable and can drive innovation and its diffusion across the economy. Improving market access would have benefits for productivity growth and competitiveness on world markets.

Fifth, environmental pressures will continue to constrain productivity potential. In response, there is an incentive for future R&D to identify new technologies and knowledge to enable output to expand while minimising use (and degradation) of resources. Government policy on the better management of environmental services may create opportunities to simultaneously lift productivity and environmental sustainability in agriculture.
References

ABS 2006, Patterns of internet access in Australia, Cat no. 8146.0.55.001, Canberra.

Commonwealth of Australia 2005, Australia’s export infrastructure, Report to the Prime Minister by the Exports and Infrastructure Taskforce, Canberra, May.

Mullen, JD and Crean, J 2007, ‘Productivity Growth in Australian Agriculture: Trends, Sources, Performance’, Report prepared for the Australian Farm Institute, RIRDC, GRDC and MLA.

Nossal, K, Sheng, Y and Zhao, S 2008, Productivity in the beef cattle and slaughter lamb industries, ABARE Research Report 08.13, Canberra.

